Tan, Z.-Okay. et al. Shiny light-emitting diodes primarily based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).
Google Scholar
Fang, Y. et al. Extremely narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).
Google Scholar
Burschka, J. et al. Sequential deposition as a path to high-performance perovskite-sensitized photo voltaic cells. Nature 499, 316–319 (2013).
Google Scholar
Kojima, A., Teshima, Okay., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
Google Scholar
Lee, M. M. et al. Environment friendly hybrid photo voltaic cells primarily based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).
Google Scholar
Li, Z. et al. Extrinsic ion migration in perovskite photo voltaic cells. Power Environ. Sci. 10, 1234–1242 (2017).
Google Scholar
Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).
Google Scholar
Mao, W. et al. Gentle-induced reversal of ion segregation in mixed-halide perovskites. Nat. Mater. 20, 55–61 (2021).
Google Scholar
Saidaminov, M. I. et al. Suppression of atomic vacancies through incorporation of isovalent small ions to extend the steadiness of halide perovskite photo voltaic cells in ambient air. Nat. Power 3, 648–654 (2018).
Google Scholar
Maiti, A., Chatterjee, S., Peedikakkandy, L. & Pal, A. J. Defects and their passivation in hybrid halide perovskites towards photo voltaic cell purposes. Sol. RRL 4, 2000505 (2020).
Google Scholar
Richardson, G. et al. Can slow-moving ions clarify hysteresis within the present–voltage curves of perovskite photo voltaic cells? Power Environ. Sci. 9, 1476–1485 (2016).
Google Scholar
Bai, S. et al. Planar perovskite photo voltaic cells with long-term stability utilizing ionic liquid components. Nature 571, 245–250 (2019).
Google Scholar
Zhao, Y. et al. Suppressing ion migration in steel halide perovskite through interstitial doping with a hint quantity of multivalent cations. Nat. Mater. 21, 1396–1402 (2022).
Google Scholar
Turren-Cruz, S.-H., Hagfeldt, A. & Saliba, M. Methylammonium-free, high-performance, and steady perovskite photo voltaic cells on a planar structure. Science 362, 449–453 (2018).
Google Scholar
Bertoluzzi, L. et al. In situ measurement of electric-field screening in hysteresis-free PTAA/FA0.83Cs0.17Pb(I0.83Br0.17)3/C60 perovskite photo voltaic cells offers an ion mobility of ∼3 × 10–7 cm2/(V s), 2 orders of magnitude sooner than reported for metal-oxide-contacted perovskite cells with hysteresis. J. Am. Chem. Soc. 140, 12775–12784 (2018).
Google Scholar
Zhang, C. et al. Temperature-dependent electrical discipline poling results in CH3NH3PbI3 optoelectronic gadgets. J. Phys. Chem. Lett. 8, 1429–1435 (2017).
Google Scholar
Elmelund, T., Scheidt, R. A., Seger, B. & Kamat, P. V. Bidirectional halide ion trade in paired lead halide perovskite movies with thermal activation. ACS Power Lett. 4, 1961–1969 (2019).
Google Scholar
Eames, C. et al. Ionic transport in hybrid lead iodide perovskite photo voltaic cells. Nat. Commun. 6, 7497 (2015).
Google Scholar
Sajedi Alvar, M., Blom, P. W. M. & Wetzelaer, G.-J. A. H. House-charge-limited electron and gap currents in hybrid organic-inorganic perovskites. Nat. Commun. 11, 4023 (2020).
Google Scholar
Mehrer, H. Diffusion in Solids: Fundamentals, Strategies, Supplies, Diffusion-Managed Processes Vol. 155 (Springer, 2007).
Suzuoka, T. Lattice and grain boundary diffusion in polycrystals. Trans. Jpn Inst. Met. 2, 25–32 (1961).
Google Scholar
Mishin, Y. M. in Defect and Diffusion Discussion board Vol. 194 1113–1126 (Trans Tech Publications, 2001).
Joesten, R. in Diffusion, Atomic Ordering, and Mass Transport: Chosen Subjects in Geochemistry (ed. Ganguly, J.) 345–395 (Springer, 1991).
Laemmle, A. et al. Investigation of the diffusion habits of sodium in Cu(In,Ga)Se2 layers. J. Appl. Phys. 115, 154501 (2014).
Google Scholar
Phung, N. et al. The function of grain boundaries on ionic defect migration in steel halide perovskites. Adv. Power Mater. 10, 1903735 (2020).
Google Scholar
Park, J.-S. et al. Accumulation of deep traps at grain boundaries in halide perovskites. ACS Power Lett. 4, 1321–1327 (2019).
Google Scholar
Aristidou, N. et al. Quick oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite photo voltaic cells. Nat. Commun. 8, 15218 (2017).
Google Scholar
Shao, Y. et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction photo voltaic cells. Nat. Commun. 5, 5784 (2014).
Google Scholar
Kowalski, Okay., Bernasik, A. & Sadowski, A. Bulk and grain boundary diffusion of titanium in yttria-stabilized zirconia. J. Eur. Ceram. Soc. 20, 951–958 (2000).
Google Scholar
Harrison, L. Affect of dislocations on diffusion kinetics in solids with explicit reference to the alkali halides. J. Chem. Soc. Faraday Trans. 57, 1191–1199 (1961).
Google Scholar
Pan, D. et al. Visualization and research of ion-diffusion kinetics in cesium lead bromide perovskite nanowires. Nano Lett. 18, 1807–1813 (2018).
Google Scholar
Harvey, S. P. et al. Mitigating measurement artifacts in TOF-SIMS evaluation of perovskite photo voltaic cells. ACS Appl. Mater. Interfaces 11, 30911–30918 (2019).
Google Scholar
Vaidya, M. et al. Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi excessive entropy alloys. J. Alloy. Compd. 688, 994–1001 (2016).
Google Scholar
Shao, Y. et al. Grain boundary dominated ion migration in polycrystalline natural–inorganic halide perovskite movies. Power Environ. Sci. 9, 1752–1759 (2016).
Google Scholar
Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its function in perovskite photo voltaic cell operation. Power Environ. Sci. 8, 2118–2127 (2015).
Google Scholar
Delugas, P., Caddeo, C., Filippetti, A. & Mattoni, A. Thermally activated level defect diffusion in methylammonium lead trihalide: anisotropic and ultrahigh mobility of iodine. J. Phys. Chem. Lett. 7, 2356–2361 (2016).
Google Scholar
Oranskaia, A. et al. Halogen migration in hybrid perovskites: the natural cation issues. J. Phys. Chem. Lett. 9, 5474–5480 (2018).
Google Scholar
Walsh, A. et al. Self-regulation mechanism for charged level defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 54, 1791–1794 (2015).
Google Scholar
Alarousu, E. et al. Ultralong radiative states in hybrid perovskite crystals: compositions for submillimeter diffusion lengths. J. Phys. Chem. Lett. 8, 4386–4390 (2017).
Google Scholar
Sajedi Alvar, M., Blom, P. W. M. & Wetzelaer, G.-J. A. H. Gadget mannequin for methylammonium lead iodide perovskite with experimentally validated ion dynamics. Adv. Electron. Mater. 6, 1900935 (2020).
Google Scholar
Lee, J.-W. et al. The function of grain boundaries in perovskite photo voltaic cells. Mater. Right this moment Power 7, 149–160 (2018).
Google Scholar
Cao, Q. et al. Environment friendly and steady inverted perovskite photo voltaic cells with very excessive fill elements through incorporation of star-shaped polymer. Sci. Adv. 7, eabg0633 (2021).
Google Scholar
Tennyson, E. M., Doherty, T. A. S. & Stranks, S. D. Heterogeneity at a number of size scales in halide perovskite semiconductors. Nat. Rev. Mater. 4, 573–587 (2019).
Google Scholar
Jariwala, S. et al. Native crystal misorientation influences non-radiative recombination in halide perovskites. Joule 3, 3048–3060 (2019).
Google Scholar
Li, W. et al. The essential function of composition-dependent intragrain planar defects within the efficiency of MA1–xFAxPbI3 perovskite photo voltaic cells. Nat. Power 6, 624–632 (2021).
Google Scholar
Lee, D. S. et al. Passivation of grain boundaries by phenethylammonium in formamidinium-methylammonium lead halide perovskite photo voltaic cells. ACS Power Lett. 3, 647–654 (2018).
Google Scholar
Wang, H. et al. Interfacial residual stress leisure in perovskite photo voltaic cells with improved stability. Adv. Mater. 31, 1904408 (2019).
Google Scholar
Niu, T. et al. Steady high-performance perovskite photo voltaic cells through grain boundary passivation. Adv. Mater. 30, 1706576 (2018).
Google Scholar
Akriti et al. Layer-by-layer anionic diffusion in two-dimensional halide perovskite vertical heterostructures. Nat. Nanotechnol. 16, 584–591 (2021).
Google Scholar
Yun, J. S. et al. Essential function of grain boundaries for ion migration in formamidinium and methylammonium lead halide perovskite photo voltaic cells. Adv. Power Mater. 6, 1600330 (2016).
Google Scholar
Gao, X.-X. et al. Steady and high-efficiency methylammonium-free perovskite photo voltaic cells. Adv. Mater. 32, 1905502 (2020).
Google Scholar
Kuno, M. & Brennan, M. C. What precisely causes light-induced halide segregation in mixed-halide perovskites? Matter 2, 21–23 (2020).
Google Scholar
Hoke, E. T. et al. Reversible photo-induced lure formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).
Google Scholar
McGovern, L. et al. Grain dimension influences activation power and migration pathways in MAPbBr3 perovskite photo voltaic cells. J. Phys. Chem. Lett. 12, 2423–2428 (2021).
Google Scholar