Maier, J. Nanoionics: ion transport and electrochemical storage in confined techniques. Nat. Mater. 4, 805–815 (2005).
Google Scholar
Bisri, S. Z., Shimizu, S., Nakano, M. & Iwasa, Y. Endeavor of iontronics: from fundamentals to functions of ion-controlled electronics. Adv. Mater. 29, 1607054 (2017).
Google Scholar
Chen, C. C., Fu, L. & Maier, J. Synergistic, ultrafast mass storage and removing in synthetic combined conductors. Nature 536, 159–164 (2016).
Google Scholar
Sata, N., Eberman, Ok., Eberl, Ok. & Maier, J. Mesoscopic quick ion conduction in nanometre-scale planar heterostructures. Nature 408, 946–949 (2000).
Google Scholar
Casado, N. et al. Tuning digital and ionic conductivities in composite supplies for electrochemical gadgets. ACS Appl. Polym. Mater. 3, 1777–1784 (2021).
Google Scholar
del Olmo, R., Mendes, T. C., Forsyth, M. & Casado, N. Blended ionic and digital conducting binders containing PEDOT:PSSand natural ionic plastic crystals towards carbon-free solid-state battery cathodes. J. Mater. Chem. A 10, 19777–19786 (2022).
Google Scholar
Del Olmo, R., Casado, N., Olmedo-Martínez, J. L., Wang, X. & Forsyth, M. Blended ionic-electronic conductors based mostly on PEDOT:PolyDADMA and natural ionic plastic crystals. Polymers 12, 1981 (2020).
Google Scholar
Chen, H. et al. Exploring chemical, mechanical, and electrical functionalities of binders for superior energy-storage gadgets. Chem. Rev. 118, 8936–8982 (2018).
Google Scholar
Lopez, J., Mackanic, D. G., Cui, Y. & Bao, Z. Designing polymers for superior battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019).
Google Scholar
Tan, S. T. M. et al. Redox-active polymers designed for the round financial system of vitality storage gadgets. ACS Vitality Lett. 6, 3450–3457 (2021).
Google Scholar
Cea, C. et al. Enhancement-mode ion-based transistor as a complete interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679–686 (2020).
Google Scholar
Tuchman, Y., Quill, T. J., LeCroy, G. & Salleo, A. A stacked hybrid natural/inorganic electrochemical random-access reminiscence for scalable implementation. Adv. Electron. Mater. 8, 2100426 (2021).
Google Scholar
Paulsen, B. D., Tybrandt, Ok., Stavrinidou, E. & Rivnay, J. Natural combined ionic–digital conductors. Nat. Mater. 19, 13–26 (2020).
Google Scholar
Melianas, A. et al. Temperature-resilient solid-state natural synthetic synapses for neuromorphic computing. Sci. Adv. 6, eabb2958 (2020).
Google Scholar
Lei, Z., Chen, B., Koo, Y. M. & Macfarlane, D. R. Introduction: ionic liquids. Chem. Rev. 117, 6633–6635 (2017).
Google Scholar
Wu, X. et al. Ionic-liquid doping permits excessive transconductance, quick response time, and excessive ion sensitivity in natural electrochemical transistors. Adv. Mater. 31, 1805544 (2019).
Google Scholar
Wu, X. et al. Ionic-liquid induced morphology tuning of PEDOT:PSS for high-performance natural electrochemical transistors. Adv. Funct. Mater. 32, 2108510 (2022).
Google Scholar
Quill, T. J. et al. Ion pair uptake in ion gel gadgets based mostly on natural combined ionic-electronic conductors. Adv. Funct. Mater. 31, 2104301 (2021).
Google Scholar
Hou, Y. & Hou, X. Bioinspired nanofluidic iontronics. Science 373, 628–629 (2021).
Google Scholar
Chun, H. & Chung, T. D. Iontronics. Annu. Rev. Anal. Chem. 8, 441–462 (2015).
Google Scholar
Bischak, C. G. et al. A reversible structural part transition by electrochemically-driven ion injection right into a conjugated polymer. J. Am. Chem. Soc. 142, 7434–7442 (2020).
Google Scholar
Thomas, E. M. et al. X-ray scattering reveals ion-induced microstructural modifications throughout electrochemical gating of poly(3-hexylthiophene). Adv. Funct. Mater. 28, 1803687 (2018).
Google Scholar
Paulsen, B. D. et al. Electrochemistry of skinny movies with in situ/operando grazing incidence X-ray scattering: bypassing electrolyte scattering for prime constancy time resolved research. Small 17, 2103213 (2021).
Google Scholar
Flagg, L. Q. et al. In situ research of the swelling by an electrolyte in electrochemical doping of ethylene glycol-substituted polythiophene. ACS Appl. Mater. Interfaces 14, 29052–29060 (2022).
Google Scholar
Thelen, J. L. et al. Relationship between mobility and lattice pressure in electrochemically doped poly(3-hexylthiophene). ACS Macro Lett. 4, 1386–1391 (2015).
Google Scholar
Zhang, S., Seaside, E., Anastas, P. T., Pfefferle, L. D. & Osuji, C. O. Self-assembly of supramolecular complexes of charged conjugated polymers and imidazolium-based ionic liquid crystals. Large 9, 100088 (2022).
Google Scholar
Largeot, C. et al. Relation between the ion dimension and pore dimension for an electrical double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008).
Google Scholar
Cendra, C. et al. Function of the anion on the transport and construction of natural combined conductors. Adv. Funct. Mater. 29, 1807034 (2019).
Google Scholar
Hulea, I. N. et al. Large energy-window view on the density of states and gap mobility in poly(p-phenylene vinylene). Phys. Rev. Lett. 93, 166601 (2004).
Google Scholar
Friedlein, J. T. et al. Affect of dysfunction on switch traits of natural electrochemical transistors. Appl. Phys. Lett. 111, 023301 (2017).
Google Scholar
Chang, X., Balooch Qarai, M. & Spano, F. C. HJ-aggregates of donor–acceptor–donor oligomers and polymers. J. Chem. Phys. 155, 034905 (2021).
Google Scholar
Clark, J., Silva, C., Good friend, R. H. & Spano, F. C. Function of intermolecular coupling within the photophysics of disordered natural semiconductors: combination emission in regioregular polythiophene. Phys. Rev. Lett. 98, 206406 (2007).
Google Scholar
Spano, F. C. Modeling dysfunction in polymer aggregates: the optical spectroscopy of regioregular poly(3-hexylthiophene) skinny movies. J. Chem. Phys. 122, 234701 (2005).
Google Scholar
Clark, J., Chang, J. F., Spano, F. C., Good friend, R. H. & Silva, C. Figuring out exciton bandwidth and movie microstructure in polythiophene movies utilizing linear absorption spectroscopy. Appl. Phys. Lett. 94, 163306 (2009).
Google Scholar
Harris, J. Ok., Neelamraju, B. & Ratcliff, E. L. Intersystem subpopulation cost switch and conformational rest previous in situ conductivity in electrochemically doped poly(3-hexylthiophene) electrodes. Chem. Mater. 31, 6870–6879 (2019).
Google Scholar
Brown, P. J. et al. Impact of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys. Rev. B 67, 064203 (2003).
Google Scholar
Spano, F. C. & Silva, C. H- and J-aggregate conduct in polymeric semiconductors. Annu. Rev. Phys. Chem. 65, 477–500 (2014).
Google Scholar
Stejskal, E. O. & Tanner, J. E. Spin diffusion measurements: spin echoes within the presence of a time-dependent subject gradient. J. Chem. Phys. 42, 288–292 (1965).
Google Scholar
Sinnaeve, D. The Stejskal–Tanner equation generalized for any gradient form—an summary of most pulse sequences measuring free diffusion. Ideas Magn. Reson. 40A, 39–65 (2012).
Google Scholar
Hoarfrost, M. L., Tyagi, M. S., Segalman, R. A. & Reimer, J. A. Impact of confinement on proton transport mechanisms in block copolymer/ionic liquid membranes. Macromolecules 45, 3112–3120 (2012).
Google Scholar
Forse, A. C. et al. Direct commentary of ion dynamics in supercapacitor electrodes utilizing in situ diffusion NMR spectroscopy. Nat. Vitality 2, 16216 (2017).
Google Scholar
Guardado, J. O. & Salleo, A. Structural results of gating poly(3-hexylthiophene) by means of an ionic liquid. Adv. Funct. Mater. 27, 1701791 (2017).
Google Scholar
Lee, J. et al. Ion gel-gated polymer thin-film transistors: working mechanism and characterization of gate dielectric capacitance, switching pace, and stability. J. Phys. Chem. C 113, 8972–8981 (2009).
Google Scholar
Bronstein, H., Nielsen, C. B., Schroeder, B. C. & McCulloch, I. The function of chemical design within the efficiency of natural semiconductors. Nat. Rev. Chem. 4, 66–77 (2020).
Google Scholar
Spyropoulos, G. D., Gelinas, J. N. & Khodagholy, D. Inside ion-gated natural electrochemical transistor: a constructing block for built-in bioelectronics. Sci. Adv. 5, eaau7378 (2020).
Google Scholar
Giovannitti, A. et al. Controlling the mode of operation of natural transistors by means of side-chain engineering. Proc. Natl Acad. Sci. USA 113, 12017–12022 (2016).
Google Scholar
Ashiotis, G. et al. The quick azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 48, 510–519 (2015).
Google Scholar
Dane, T. G. pygix. GitHub https://github.com/tgdane/pygix (2017).