Basov, D., Averitt, R. & Hsieh, D. In direction of properties on demand in quantum supplies. Nat. Mater. 16, 1077–1088 (2017).
Google Scholar
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
Google Scholar
Němec, P., Fiebig, M., Kampfrath, T. & Kimel, A. V. Antiferromagnetic opto-spintronics. Nat. Phys. 14, 229–241 (2018).
Google Scholar
Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).
Google Scholar
Manz, S. et al. Reversible optical switching of antiferromagnetism in TbMnO3. Nat. Photon. 10, 653–656 (2016).
Google Scholar
Higuchi, T. & Kuwata-Gonokami, M. Management of antiferromagnetic area distribution through polarization-dependent optical annealing. Nat. Commun. 7, 10720 (2016).
Google Scholar
Fiebig, M. Revival of the magnetoelectric impact. J. Phys. D Appl. Phys. 38, R123–R152 (2005).
Google Scholar
Jiang, S., Shan, J. & Mak, Okay. F. Electrical-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).
Google Scholar
Gao, A. et al. Layer Corridor impact in a 2D topological axion antiferromagnet. Nature 595, 521–525 (2021).
Google Scholar
Huck, N. P., Jager, W. F., De Lange, B. & Feringa, B. L. Dynamic management and amplification of molecular chirality by round polarized gentle. Science 273, 1686–1688 (1996).
Google Scholar
Xu, S.-Y. et al. Spontaneous gyrotropic digital order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).
Google Scholar
Krichevtsov, B., Pavlov, V., Pisarev, R. & Gridnev, V. Spontaneous non-reciprocal reflection of sunshine from antiferromagnetic Cr2O3. J. Phys. Condens. Matter 5, 8233–8244 (1993).
Google Scholar
Krichevtsov, B., Pavlov, V., Pisarev, R. & Gridnev, V. Magnetoelectric spectroscopy of digital transitions in antiferromagnetic Cr2O3. Phys. Rev. Lett. 76, 4628–4631 (1996).
Google Scholar
Xia, J. et al. Polar Kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor: proof for damaged symmetry close to the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008).
Google Scholar
Otrokov, M. M. et al. Prediction and remark of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).
Google Scholar
Otrokov, M. M. et al. Distinctive thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 movies. Phys. Rev. Lett. 122, 107202 (2019).
Google Scholar
Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family supplies. Sci. Adv. 5, eaaw5685 (2019).
Google Scholar
Zhang, D. et al. Topological axion states within the magnetic insulator MnBi2Te4 with the quantized magnetoelectric impact. Phys. Rev. Lett. 122, 206401 (2019).
Google Scholar
Zhang, R.-X., Wu, F. & Das Sarma, S. Möbius insulator and higher-order topology in MnBi2nTe3n+1. Phys. Rev. Lett. 124, 136407 (2020).
Google Scholar
Liu, Z. & Wang, J. Anisotropic topological magnetoelectric impact in axion insulators. Phys. Rev. B 101, 205130 (2020).
Google Scholar
Deng, Y. et al. Quantum anomalous Corridor impact in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).
Google Scholar
Liu, C. et al. Strong axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).
Google Scholar
Deng, H. et al. Excessive-temperature quantum anomalous Corridor regime in a MnBi2Te4/Bi2Te3 superlattice. Nat. Phys. 17, 36–42 (2021).
Google Scholar
Yang, S. et al. Odd-even layer-number impact and layer-dependent magnetic part diagrams in MnBi2Te4. Phys. Rev. X 11, 011003 (2021).
Google Scholar
Ovchinnikov, D. et al. Intertwined topological and magnetic orders in atomically skinny Chern insulator MnBi2Te4. Nano Lett. 21, 2544–2550 (2021).
Google Scholar
Cai, J. et al. Electrical management of a canted-antiferromagnetic Chern insulator. Nat. Commun. 13, 1668 (2022).
Google Scholar
Li, Y. et al. Nonlocal transport and one-dimensional conduction within the axion insulator state of MnBi2Te4. Preprint at https://arxiv.org/abs/2105.10390 (2021).
Tai, L. et al. Distinguishing two-component anomalous Corridor impact from topological Corridor impact in magnetic topological insulator MnBi2Te4. ACS Nano 16, 17336–17346 (2022).
Google Scholar
Orenstein, J. Optical nonreciprocity in magnetic constructions associated to high-Tc superconductors. Phys. Rev. Lett. 107, 067002 (2011).
Google Scholar
Varma, C. Gyrotropic birefringence within the underdoped cuprates. Europhys. Lett. 106, 27001 (2014).
Google Scholar
Huang, B. et al. Electrical management of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).
Google Scholar
Canright, G. & Rojo, A. Ellipsometry and damaged time-reversal symmetry within the high-temperature superconductors. Phys. Rev. B 46, 14078 (1992).
Google Scholar
Ahn, J., Xu, S.-Y. & Vishwanath, A. Concept of optical axion electrodynamics and utility to the Kerr impact in topological antiferromagnets. Nat. Commun. 13, 7615 (2022).
Google Scholar
Malashevich, A. & Souza, I. Band idea of spatial dispersion in magnetoelectrics. Phys. Rev. B 82, 245118 (2010).
Google Scholar
Graham, E. & Raab, R. Macroscopic idea of reflection from antiferromagnetic Cr2O3. J. Phys. Condens. Matter 9, 1863–1869 (1997).
Google Scholar
Dzyaloshinskii, I. & Papamichail, E. Nonreciprocal optical rotation in antiferromagnets. Phys. Rev. Lett. 75, 3004–3007 (1995).
Google Scholar
Xia, J., Maeno, Y., Beyersdorf, P. T., Fejer, M. & Kapitulnik, A. Excessive decision polar Kerr impact measurements of Sr2RuO4: proof for damaged time-reversal symmetry within the superconducting state. Phys. Rev. Lett. 97, 167002 (2006).
Google Scholar
Schemm, E., Gannon, W., Wishne, C., Halperin, W. & Kapitulnik, A. Commentary of damaged time-reversal symmetry within the heavy-fermion superconductor UPt3. Science 345, 190–193 (2014).
Google Scholar
Hayes, I. et al. Multicomponent superconducting order parameter in UTe2. Science 373, 797–801 (2021).
Google Scholar
Kawabata, Okay., Ashida, Y., Katsura, H. & Ueda, M. Parity-time-symmetric topological superconductor. Phys. Rev. B 98, 085116 (2018).
Google Scholar
Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological subject idea of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).
Google Scholar
Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).
Google Scholar
Wu, L. et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 354, 1124–1127 (2016).
Google Scholar
Xiao, D. et al. Realization of the axion insulator state in quantum anomalous Corridor sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018).
Google Scholar
Nenno, D. M., Garcia, C. A., Gooth, J., Felser, C. & Narang, P. Axion physics in condensed-matter programs. Nat. Rev. Phys. 2, 682–696 (2020).
Google Scholar
Mogi, M. et al. Experimental signature of the parity anomaly in a semi-magnetic topological insulator. Nat. Phys. 18, 390–394 (2022).
Google Scholar
Yan, J.-Q. et al. Crystal progress and magnetic construction of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019).
Google Scholar
Zhao, S. Y. F. et al. Emergent interfacial superconductivity between twisted cuprate superconductors. Preprint at arXiv https://doi.org/10.48550/arXiv.2108.13455 (2021).
Thiel, L. et al. Probing magnetism in 2D supplies on the nanoscale with single-spin microscopy. Science 364, 973–976 (2019).
Google Scholar
Kimura, Okay., Katsuyoshi, T., Sawada, Y., Kimura, S. & Kimura, T. Imaging switchable magnetoelectric quadrupole domains through nonreciprocal linear dichroism. Commun. Mater. 1, 39 (2020).
Google Scholar
Toledano, J.-C. & Toledano, P.The Landau Concept of Part Transitions: Utility to Structural, Incommensurate, Magnetic and Liquid Crystal Methods (World Scientific, 1987).
Otrokov, M. M. et al. Distinctive thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 movies. Phys. Rev. Lett. 122, 107202 (2019).
Google Scholar
Ahn, J., Guo, G.-Y., Nagaosa, N. & Vishwanath, A. Riemannian geometry of resonant optical responses. Nat. Phys. 18, 290–295 (2022).
Google Scholar