Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).
Google Scholar
Hoffmann, A. & Bader, S. D. Alternatives on the frontiers of spintronics. Phys. Rev. Appl. 4, 047001 (2015).
Google Scholar
Uchida, Ok. et al. Statement of the spin Seebeck impact. Nature 455, 778–781 (2008).
Google Scholar
Jaworski, C. M. et al. Statement of the spin-Seebeck impact in a ferromagnetic semiconductor. Nat. Mater. 9, 898–903 (2010).
Google Scholar
Slachter, A., Bakker, F. L., Adam, J. P. & van Wees, B. J. Thermally pushed spin injection from a ferromagnet right into a non-magnetic metallic. Nat. Phys. 6, 879–882 (2010).
Google Scholar
Uchida, Ok. et al. Lengthy-range spin Seebeck impact and acoustic spin pumping. Nat. Mater. 10, 737–741 (2011).
Google Scholar
Flipse, J., Bakker, F. L., Slachter, A., Dejene, F. Ok. & van Wees, B. J. Direct statement of the spin-dependent Peltier impact. Nat. Nanotechnol. 7, 166–168 (2012).
Google Scholar
Jaworski, C. M., Myers, R. C., Johnston-Halperin, E. & Heremans, J. P. Big spin Seebeck impact in a non-magnetic materials. Nature 487, 210–213 (2012).
Google Scholar
Wu, S. M., Pearson, J. E. & Bhattacharya, A. Paramagnetic spin Seebeck impact. Phys. Rev. Lett. 114, 186602 (2015).
Google Scholar
Meyer, S. et al. Statement of the spin Nernst impact. Nat. Mater. 16, 977–981 (2017).
Google Scholar
Uchida, Ok.-I. et al. Statement of longitudinal spin-Seebeck impact in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010).
Google Scholar
Seki, S. et al. Thermal technology of spin present in an antiferromagnet. Phys. Rev. Lett. 115, 266601 (2015).
Google Scholar
Wu, S. M. et al. Antiferromagnetic spin Seebeck impact. Phys. Rev. Lett. 116, 097204 (2016).
Google Scholar
Aqeel, A. et al. Spin-Corridor magnetoresistance and spin Seebeck impact in spin-spiral and paramagnetic phases of multiferroic CoCr2O4 movies. Phys. Rev. B 92, 224410 (2015).
Google Scholar
Xiao, J., Bauer, G. E. W., Uchida, Ok.-C., Saitoh, E. & Maekawa, S. Idea of magnon-driven spin Seebeck impact. Phys. Rev. B 81, 214418 (2010).
Google Scholar
Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin present into cost present at room temperature: inverse spin-Corridor impact. Appl. Phys. Lett. 88, 182509 (2006).
Google Scholar
Mayer, S. & Kessler, J. Experimental verification of electron optic dichroism. Phys. Rev. Lett. 74, 4803–4806 (1995).
Google Scholar
Grissonnanche, G. et al. Chiral phonons within the pseudogap section of cuprates. Nat. Phys. 16, 1108–1111 (2020).
Google Scholar
Zhang, L. & Niu, Q. Chiral phonons at high-symmetry factors in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).
Google Scholar
Zhu, H. et al. Statement of chiral phonons. Science 359, 579–582 (2018).
Google Scholar
Chen, X. et al. Entanglement of single-photons and chiral phonons in atomically skinny WSe2. Nat. Phys. 15, 221–227 (2019).
Google Scholar
Chen, H., Wu, W., Zhu, J., Yang, S. A. & Zhang, L. Propagating chiral phonons in three-dimensional supplies. Nano Lett. 21, 3060–3065 (2021).
Google Scholar
Choi, G.-M., Min, B.-C., Lee, Ok.-J. & Cahill, D. G. Spin present generated by thermally pushed ultrafast demagnetization. Nat. Commun. 5, 4334 (2014).
Google Scholar
Schellekens, A. J., Kuiper, Ok. C., de Wit, R. R. J. C. & Koopmans, B. Ultrafast spin-transfer torque pushed by femtosecond pulsed-laser excitation. Nat. Commun. 5, 4333 (2014).
Google Scholar
Choi, G.-M., Moon, C.-H., Min, B.-C., Lee, Ok.-J. & Cahill, D. G. Thermal spin-transfer torque pushed by the spin-dependent Seebeck impact in metallic spin-valves. Nat. Phys. 11, 576–581 (2015).
Google Scholar
Georgieva, Z. N., Bloom, B. P., Ghosh, S. & Waldeck, D. H. Imprinting chirality onto the digital states of colloidal perovskite nanoplatelets. Adv. Mater. 30, 1800097 (2018).
Google Scholar
Huang, Z. et al. Magneto-optical detection of photoinduced magnetism by way of chirality-induced spin selectivity in 2D chiral hybrid natural–inorganic perovskites. ACS Nano 14, 10370–10375 (2020).
Google Scholar
Kim, Y.-H. et al. Chiral-induced spin selectivity permits a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).
Google Scholar
Hu, J., Yan, L. & You, W. Two-dimensional natural–inorganic hybrid perovskites: a brand new platform for optoelectronic functions. Adv. Mater. 30, 1802041 (2018).
Google Scholar
Lengthy, G. et al. Spin management in reduced-dimensional chiral perovskites. Nat. Photonics 12, 528–533 (2018).
Google Scholar
Lu, H. et al. Spin-dependent cost transport via 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019).
Google Scholar
Choi, G.-M. & Cahill, D. G. Kerr rotation in Cu, Ag, and Au pushed by spin accumulation and spin–orbit coupling. Phys. Rev. B 90, 214432 (2014).
Google Scholar
Schulz, L. G. The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient okay. J. Decide. Soc. Am. 44, 357–362 (1954).
Google Scholar
McLaughlin, R., Solar, D., Zhang, C., Groesbeck, M. & Vardeny, Z. V. Optical detection of transverse spin-Seebeck impact in permalloy movie utilizing Sagnac interferometer microscopy. Phys. Rev. B 95, 180401 (2017).
Google Scholar
Cahill, D. G. Evaluation of warmth move in layered constructions for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).
Google Scholar
Liu, J. et al. Simultaneous measurement of thermal conductivity and warmth capability of bulk and skinny movie supplies utilizing frequency-dependent transient thermoreflectance methodology. Rev. Sci. Instrum. 84, 034902 (2013).
Google Scholar
Zhang, L. & Niu, Q. Angular momentum of phonons and the Einstein–de Haas impact. Phys. Rev. Lett. 112, 085503 (2014).
Google Scholar
Ren, Y., Xiao, C., Saparov, D. & Niu, Q. Phonon magnetic second from digital topological magnetization. Phys. Rev. Lett. 127, 186403 (2021).
Google Scholar
Brataas, A., Kent, A. D. & Ohno, H. Present-induced torques in magnetic supplies. Nat. Mater. 11, 372–381 (2012).
Google Scholar
Koopmans, B. et al. Explaining the paradoxical range of ultrafast laser-induced demagnetization. Nat. Mater. 9, 259–265 (2010).
Google Scholar
Uchida, Ok. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010).
Google Scholar
Vetter, E. et al. Tuning of spin–orbit coupling in metal-free conjugated polymers by structural conformation. Phys. Rev. Mater. 4, 085603 (2020).
Google Scholar
Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).
Google Scholar
Das, T. Ok., Tassinari, F., Naaman, R. & Fransson, J. Temperature-dependent chiral-induced spin selectivity impact: experiments and idea. J. Phys. Chem. C 126, 3257–3264 (2022).
Google Scholar
Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGehee, M. D. & Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53, 11232–11235 (2014).
Google Scholar
Liu, J., Choi, G.-M. & Cahill, D. G. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr impact. J. Appl. Phys. 116, 233107 (2014).
Google Scholar