Phelan, J. D. et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature 560, 387–391 (2018).
Google Scholar
Chapuy, B. et al. Molecular subtypes of diffuse giant B cell lymphoma are related to distinct pathogenic mechanisms and outcomes. Nat. Med. 24, 679–690 (2018).
Google Scholar
Roschewski, M., Staudt, L. M. & Wilson, W. H. Diffuse giant B-cell lymphoma-treatment approaches within the molecular period. Nat. Rev. Clin. Oncol. 11, 12–23 (2014).
Google Scholar
Lenz, G. et al. Oncogenic CARD11 mutations in human diffuse giant B cell lymphoma. Science 319, 1676–1679 (2008).
Google Scholar
Fontan, L. et al. Identification of MALT1 suggestions mechanisms allows rational design of potent antilymphoma regimens for ABC-DLBCL. Blood 137, 788–800 (2021).
Google Scholar
Wilson, W. H. et al. Concentrating on B cell receptor signaling with ibrutinib in diffuse giant B cell lymphoma. Nat. Med. 21, 922–926 (2015).
Google Scholar
Younger, R. M. & Staudt, L. M. Concentrating on pathological B cell receptor signalling in lymphoid malignancies. Nat. Rev. Drug Disco. 12, 229–243 (2013).
Google Scholar
Younger, R. M., Phelan, J. D., Wilson, W. H. & Staudt, L. M. Pathogenic B-cell receptor signaling in lymphoid malignancies: new insights to enhance remedy. Immunol. Rev. 291, 190–213 (2019).
Google Scholar
Schmitz, R. et al. Genetics and pathogenesis of diffuse giant B-cell lymphoma. N. Engl. J. Med. 378, 1396–1407 (2018).
Google Scholar
Fontan, L. et al. MALT1 small molecule inhibitors particularly suppress ABC-DLBCL in vitro and in vivo. Most cancers cell 22, 812–824 (2012).
Google Scholar
Solar, L., Deng, L., Ea, C. Okay., Xia, Z. P. & Chen, Z. J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301 (2004).
Google Scholar
Hailfinger, S. et al. Malt1-dependent RelB cleavage promotes canonical NF-kappaB activation in lymphocytes and lymphoma cell traces. Proc. Natl Acad. Sci. USA 108, 14596–14601 (2011).
Google Scholar
Fontan, L. et al. Particular covalent inhibition of MALT1 paracaspase suppresses B cell lymphoma development. J. Clin. Make investments. 128, 4397–4412 (2018).
Google Scholar
Nagel, D. et al. Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic method for the remedy of aggressive ABC-DLBCL. Most cancers Cell 22, 825–837 (2012).
Google Scholar
Kotlov, N. et al. Medical and organic subtypes of B-cell lymphoma revealed by microenvironmental signatures. Most cancers Discov. 11, 1468–1489 (2021).
Google Scholar
Wright, G. W. et al. A probabilistic classification device for genetic subtypes of diffuse giant B cell lymphoma with therapeutic implications. Most cancers Cell 37, 551–568 e514 (2020).
Google Scholar
Scott, D. W. & Gascoyne, R. D. The tumour microenvironment in B cell lymphomas. Nat. Rev. Most cancers 14, 517–534 (2014).
Google Scholar
Elgueta, R. et al. Molecular mechanism and performance of CD40/CD40L engagement within the immune system. Immunol. Rev. 229, 152–172 (2009).
Google Scholar
Ito, D. et al. CD40 ligand is important and ample to assist main diffuse giant B-cell lymphoma cells in tradition: a device for in vitro preclinical research with main B-cell malignancies. Leuk. Lymphoma 53, 1390–1398 (2012).
Google Scholar
Nojima, T. et al. In-vitro derived germinal centre B cells differentially generate reminiscence B or plasma cells in vivo. Nat. Commun. 2, 465 (2011).
Google Scholar
Ennishi, D. et al. Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic goal for enhancing immune recognition. Most cancers Discov. 9, 546–563 (2019).
Google Scholar
Reddy, A. et al. Genetic and purposeful drivers of diffuse giant B cell lymphoma. Cell 171, 481–494.e415 (2017).
Google Scholar
Ni, C. Z. et al. Molecular foundation for CD40 signaling mediated by TRAF3. Proc. Natl Acad. Sci. USA 97, 10395–10399 (2000).
Google Scholar
Phelps, E. A. et al. Maleimide cross-linked bioactive PEG hydrogel reveals improved response kinetics and cross-linking for cell encapsulation and in situ supply. Adv. Mater. 24, 64–70 (2012). 62.
Google Scholar
Graney, P. L. et al. Organoid polymer performance and mode of Klebsiella pneumoniae membrane antigen presentation regulates ex vivo germinal heart epigenetics in younger and aged B cells. Adv. Funct. Mater. 30, 2001232 (2020).
Google Scholar
Lutolf, M. P. & Hubbell, J. A. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels fashioned by Michael-type addition. Biomacromolecules 4, 713–722 (2003).
Google Scholar
Rodda, L. B. et al. Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity 48, 1014–1028 e1016 (2018).
Google Scholar
Massia, S. P. & Hubbell, J. A. Vascular endothelial cell adhesion and spreading promoted by the peptide REDV of the IIICS area of plasma fibronectin is mediated by integrin α 4 β 1. J. Biol. Chem. 267, 14019–14026 (1992).
Google Scholar
Rydholm, A. E., Bowman, C. N. & Anseth, Okay. S. Degradable thiol-acrylate photopolymers: polymerization and degradation conduct of an in situ forming biomaterial. Biomaterials 26, 4495–4506 (2005).
Google Scholar
Quancard, J. et al. An allosteric MALT1 inhibitor is a molecular corrector rescuing operate in an immunodeficient affected person. Nat. Chem. Biol. 15, 304–313 (2019).
Google Scholar
Richards, Okay. L. et al. Gene profiling of canine B-cell lymphoma reveals germinal heart and postgerminal heart subtypes with totally different survival occasions, modeling human DLBCL. Most cancers Res. 73, 5029–5039 (2013).
Google Scholar
Tolar, P., Hanna, J., Krueger, P. D. & Pierce, S. Okay. The fixed area of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity 30, 44–55 (2009).
Google Scholar
Clark, A. Y. et al. Integrin-specific hydrogels modulate transplanted human bone marrow-derived mesenchymal stem cell survival, engraftment, and reparative actions. Nat. Commun. 11, 114 (2020).
Google Scholar
Arnaout, M. A., Mahalingam, B. & Xiong, J. P. Integrin construction, allostery, and bidirectional signaling. Annu. Rev. Cell Dev. Biol. 21, 381–410 (2005).
Google Scholar
Bellis, S. L. Benefits of RGD peptides for guiding cell affiliation with biomaterials. Biomaterials 32, 4205–4210 (2011).
Google Scholar
Knight, C. G. et al. Identification in collagen kind I of an integrin alpha2 beta1-binding web site containing a necessary GER sequence. J. Biol. Chem. 273, 33287–33294 (1998).
Google Scholar
Zeltz, C. & Gullberg, D. The integrin-collagen connection—a glue for tissue restore? J. Cell Sci. 129, 653–664 (2016).
Google Scholar
Arana, E., Harwood, N. E. & Batista, F. D. Regulation of integrin activation by way of the B-cell receptor. J. Cell Sci. 121, 2279–2286 (2008).
Google Scholar
Carrasco, Y. R. & Batista, F. D. B‐cell activation by membrane‐sure antigens is facilitated by the interplay of VLA‐4 with VCAM‐1. EMBO J. 25, 889–899 (2006).
Google Scholar
Weekes, C. D., Kuszynski, C. A. & Sharp, J. G. VLA-4 mediated adhesion to bone marrow stromal cells confers chemoresistance to adherent lymphoma cells. Leuk. Lymphoma 40, 631–645 (2001).
Google Scholar
Headen, D. M. et al. Native immunomodulation Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nat. Mater. 17, 732–739 (2018).
Google Scholar
Landon, A. L. et al. MNKs act as a regulatory swap for eIF4E1 and eIF4E3 pushed mRNA translation in DLBCL. Nat. Commun. 5, 5413 (2014).
Google Scholar
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).
Google Scholar
Zheng, M. et al. A mixture of S and ΔS variants of STAT3 allow survival of activated B-cell-like diffuse giant B-cell lymphoma cells in tradition. Oncogenesis 4, e184 (2016).
Google Scholar
Apoorva, F. N. U. et al. Lymph node stiffness-mimicking hydrogels regulate human B-cell lymphoma development and cell floor receptor expression in a molecular subtype-specific method. J. Biomed. Mater. Res. A 105, 1833–1844 (2017).
Google Scholar
Ohto, U. et al. Structural foundation of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 520, 702–705 (2015).
Google Scholar
Scuoppo, C. et al. Repurposing dasatinib for diffuse giant B cell lymphoma. Proc. Natl Acad. Sci. USA 116, 16981–16986 (2019).
Google Scholar
Battistello, E. et al. Pan-SRC kinase inhibition blocks B-cell receptor oncogenic signaling in non-Hodgkin lymphoma. Blood 131, 2345–2356 (2018).
Google Scholar
Gopal, A. Okay. et al. PI3Kδ inhibition by idelalisib in sufferers with relapsed indolent lymphoma. N. Engl. J. Med. 370, 1008–1018 (2014).
Google Scholar
Kim, S., Shah, S. B., Graney, P. L. & Singh, A. Multiscale engineering of immune cells and lymphoid organs. Nat. Rev. Mater. 4, 355–378 (2019).
Google Scholar
Liao, Y., Smyth, G. Okay. & Shi, W. featureCounts: an environment friendly normal function program for assigning sequence reads to genomic options. Bioinformatics, 30(7):923–30 (2014).
Robinson, M. D., McCarthy, D. J. & Smyth, G. Okay. edgeR: a Bioconductor package deal for differential expression evaluation of digital gene expression information. Bioinformatics, 26(1), 139–140 (2010); https://doi.org/10.1093/bioinformatics/btp616
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Legislation, C. W., Shi, W. & Smyth, G. Okay. limma powers differential expression analyses for RNA-sequencing and microarray research. Nucleic Acids Res., 43(7), e47 (2015); https://doi.org/10.1093/nar/gkv007
Kolde, R. pheatmap: Fairly Heatmaps. R package deal model 1.0.12 (2019).
Shen, Y. et al. Oncogenic function of the SOX9–DHCR24–ldl cholesterol biosynthesis axis in IGH-BCL2+ diffuse giant B-cell lymphomas. Blood 139, 73–86 (2022).
Google Scholar
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for mobile segmentation. Nat Strategies 18, 100–106 (2021).
Google Scholar
Apoorva, F. et al. How biophysical forces regulate human B cell lymphomas. Cell Rep. 23, 499–511 (2018).
Google Scholar
Purwada, A. et al. Ex vivo engineered immune organoids for managed germinal heart reactions. Biomaterials 63, 24–34 (2015).
Google Scholar
Purwada, A. et al. Ex vivo artificial immune tissues with T cell alerts for differentiating antigen-specific, excessive affinity germinal heart B cells. Biomaterials 198, 27–36 (2019).
Google Scholar
Purwada, A., Shah, S. B., Beguelin, W., Melnick, A. M. & Singh, A. Modular immune organoids with integrin ligand specificity differentially regulate ex vivo B cell activation. ACS Biomater. Sci. Eng. 3, 214–225 (2017).
Google Scholar