Cao, J., Wang, Q. & Dai, H. Electron transport in very clear, as-grown suspended carbon nanotubes. Nat. Mater. 4, 745–749 (2005).
Google Scholar
Jarillo-Herrero, P., Sapmaz, S., Dekker, C., Kouwenhoven, L. P. & van der Zant, H. S. Electron–gap symmetry in a semiconducting carbon nanotube quantum dot. Nature 429, 389–392 (2004).
Google Scholar
Minot, E. D., Yaish, Y., Sazonova, V. & Mceuen, P. L. Willpower of electron orbital magnetic moments in carbon nanotubes. Nature 428, 536–539 (2004).
Google Scholar
Cai, J. et al. Atomically exact bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).
Google Scholar
Narita, A. et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2014).
Google Scholar
Yang, W., Lucotti, A., Tommasini, M. & Chalifoux, W. A. Backside-up synthesis of soluble and slender graphene nanoribbons utilizing alkyne benzannulations. J. Am. Chem. Soc. 138, 9137–9144 (2016).
Google Scholar
Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).
Google Scholar
Jiao, L., Wang, X., Diankov, G., Wang, H. & Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nano. 5, 321–325 (2010).
Google Scholar
Wang, X. et al. Graphene nanoribbons with easy edges behave as quantum wires. Nat. Nano 6, 563–567 (2011).
Google Scholar
Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Slim graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).
Google Scholar
Laird, E. A. et al. Quantum transport in carbon nanotubes. Rev. Mod. Phys. 87, 703–764 (2015).
Google Scholar
Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. Ok. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).
Google Scholar
Llinas, J. P. et al. Quick-channel field-effect transistors with 9-atom and 13-atom extensive graphene nanoribbons. Nat. Commun. 8, 633 (2017).
Google Scholar
Nguyen, G. D. et al. Atomically exact graphene nanoribbon heterojunctions from a single molecular precursor. Nat. Nano. 12, 1077–1082 (2017).
Google Scholar
Bischoff, D. et al. Localized cost carriers in graphene nanodevices. Appl. Phys. Rev. 2, 031301 (2015).
Google Scholar
Ponomarenko, L. A. et al. Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008).
Google Scholar
Slota, M. et al. Magnetic edge states and coherent manipulation of graphene nanoribbons. Nature 557, 691–695 (2018).
Google Scholar
Yang, J. et al. The affect of the molecular packing on the room temperature phosphorescence of purely natural luminogens. Nat. Commun. 9, 840 (2018).
Google Scholar
Tan, P. H. et al. Photoluminescence spectroscopy of carbon nanotube bundles: proof for exciton power switch. Phys. Rev. Lett. 99, 137402 (2007).
Google Scholar
Richter, N. et al. Cost transport mechanism in networks of armchair graphene nanoribbons. Sci. Rep. 10, 1988 (2020).
Google Scholar
Shylau, A. A., Kłos, J. W. & Zozoulenko, I. V. Capacitance of graphene nanoribbons. Phys. Rev. B 80, 205402 (2009).
Google Scholar
Gehring, P. et al. Distinguishing lead and molecule states in graphene-based single-electron transistors. ACS Nano 11, 5325–5331 (2017).
Google Scholar
Leturcq, R. et al. Franck–Condon blockade in suspended carbon nanotube quantum dots. Nat. Phys. 5, 327–331 (2009).
Google Scholar
Sapmaz, S., Jarillo-Herrero, P., Blanter, Y. M., Dekker, C. & Van Der Zant, H. S. J. Tunneling in suspended carbon nanotubes assisted by longitudinal phonons. Phys. Rev. Lett. 96, 026801 (2006).
Google Scholar
Zhou, G., Cen, C., Wang, S., Deng, M. & Prezhdo, O. V. Electron–phonon scattering is way weaker in carbon nanotubes than in graphene nanoribbons. J. Phys. Chem. Lett. 10, 7179–7187 (2019).
Google Scholar
Savin, A. V. & Kivshar, Y. S. Localized vibrations of graphene nanoribbons. Low. Temp. Phys. 42, 703–710 (2016).
Google Scholar
Thomas, J. O. et al. Understanding resonant cost transport by means of weakly coupled single-molecule junctions. Nat. Commun. 10, 4628 (2019).
Google Scholar
Droth, M. & Burkard, G. Acoustic phonons and spin leisure in graphene nanoribbons. Phys. Rev. B 84, 155404 (2011).
Google Scholar