• Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms & Conditions
No Result
View All Result
Dinero Post
  • Home
  • Economy
  • Finance
  • Industry
  • Real Estate
  • Utilities Sector
  • Materials
  • Home
  • Economy
  • Finance
  • Industry
  • Real Estate
  • Utilities Sector
  • Materials
No Result
View All Result
Dinero Post
No Result
View All Result

In the direction of two-dimensional van der Waals ferroelectrics

Dinero Post by Dinero Post
January 23, 2023
in Materials
0
Share on FacebookShare on Twitter


  • Valasek, J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475–481 (1921).

    Article 
    CAS 

    Google Scholar 

  • Traces M. E. & Glass A. M. Ideas and Purposes of Ferroelectrics and Associated Supplies (Oxford Univ. Press, 2001).

  • Dawber, M., Rabe, Okay. & Scott, J. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    Article 
    CAS 

    Google Scholar 

  • Gao, W., Zhu, Y., Wang, Y., Yuan, G. & Liu, J.-M. A assessment of versatile perovskite oxide ferroelectric movies and their software. J. Materiomics 6, 1–16 (2020).

    Article 

    Google Scholar 

  • Pawley, G., Cochran, W., Cowley, R. & Dolling, G. Diatomic ferroelectrics. Phys. Rev. Lett. 17, 753–755 (1966).

    Article 
    CAS 

    Google Scholar 

  • Brec, R. in Intercalation in Layered Supplies (ed. Dresselhaus, M. S.) 93–124 (Springer, 1986).

  • Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Article 
    CAS 

    Google Scholar 

  • Chang, Okay. et al. Discovery of strong in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and different III2-VI3 van der Waals supplies. Nat. Commun. 8, 14956 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508–5513 (2017).

    Article 
    CAS 

    Google Scholar 

  • You, L. et al. In‐airplane ferroelectricity in skinny flakes of van der Waals hybrid perovskite. Adv. Mater. 30, 1803249 (2018).

    Article 

    Google Scholar 

  • Fei, Z. et al. Ferroelectric switching of a two-dimensional metallic. Nature 560, 336–339 (2018).

    Article 
    CAS 

    Google Scholar 

  • Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).

    Article 
    CAS 

    Google Scholar 

  • Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 all the way down to the atomic monolayer restrict. Nat. Commun. 10, 1775 (2019).

    Article 

    Google Scholar 

  • Barraza-Lopez, S., Fregoso, B. M., Villanova, J. W., Parkin, S. S. & Chang, Okay. Colloquium: Bodily properties of group-IV monochalcogenide monolayers. Rev. Mod. Phys. 93, 011001 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article 
    CAS 

    Google Scholar 

  • Yasuda, Okay., Wang, X., Watanabe, Okay., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article 
    CAS 

    Google Scholar 

  • Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article 
    CAS 

    Google Scholar 

  • Varotto, S. et al. Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride. Nat. Electron. 4, 740–747 (2021).

    Article 
    CAS 

    Google Scholar 

  • Andersen, T. I. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 20, 480–487 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metallic dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article 
    CAS 

    Google Scholar 

  • Park, C. B. et al. Remark of spin‐induced ferroelectricity in a layered van der Waals antiferromagnet CuCrP2S6. Adv. Electron. Mater. 8, 2101072 (2022).

    Article 
    CAS 

    Google Scholar 

  • Son, S. et al. Multiferroic enabled magnetic‐exciton in 2D quantum-entangled van der Waals antiferromagnet NiI2. Adv. Mater. 34, 2109144 (2021).

    Article 

    Google Scholar 

  • Music, Q. et al. Proof for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).

    Article 
    CAS 

    Google Scholar 

  • Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).

    Article 
    CAS 

    Google Scholar 

  • Liu, Okay., Lu, J., Picozzi, S., Bellaiche, L. & Xiang, H. Intrinsic origin of enhancement of ferroelectricity in SnTe ultrathin movies. Phys. Rev. Lett. 121, 027601 (2018).

    Article 

    Google Scholar 

  • Zhou, S. et al. Van der Waals layered ferroelectric CuInP2S6: bodily properties and gadget functions. Entrance. Phys. 16, 13301 (2021).

    Article 

    Google Scholar 

  • Shirodkar, S. N. & Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 112, 157601 (2014).

    Article 

    Google Scholar 

  • Leng, Okay., Fu, W., Liu, Y., Chhowalla, M. & Loh, Okay. P. From bulk to molecularly skinny hybrid perovskites. Nat. Rev. Mater. 5, 482–500 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hlinka, J. et al. Coexistence of the phonon and rest comfortable modes within the terahertz dielectric response of tetragonal BaTiO3. Phys. Rev. Lett. 101, 167402 (2008).

    Article 
    CAS 

    Google Scholar 

  • Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).

    Article 
    CAS 

    Google Scholar 

  • Rogée, L. et al. Ferroelectricity in untwisted heterobilayers of transition metallic dichalcogenides. Science 376, 973–978 (2022).

    Article 

    Google Scholar 

  • Wang, J. (ed.) Multiferroic Supplies: Properties, Methods, and Purposes (CRC, 2016).

  • Kimura, T. et al. Magnetic management of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article 
    CAS 

    Google Scholar 

  • Zhang, J.-J. et al. Sort-II multiferroic Hf2VC2F2 MXene monolayer with excessive transition temperature. J. Am. Chem. Soc. 140, 9768–9773 (2018).

    Article 
    CAS 

    Google Scholar 

  • Stengel, M. & Spaldin, N. A. Origin of the dielectric useless layer in nanoscale capacitors. Nature 443, 679–682 (2006).

    Article 
    CAS 

    Google Scholar 

  • You, L. et al. Origin of big unfavorable piezoelectricity in a layered van der Waals ferroelectric. Sci. Adv. 5, eaav3780 (2019).

    Article 
    CAS 

    Google Scholar 

  • Qi, Y. & Rappe, A. M. Widespread unfavorable longitudinal piezoelectric responses in ferroelectric crystals with layered constructions. Phys. Rev. Lett. 126, 217601 (2021).

    Article 
    CAS 

    Google Scholar 

  • Katsouras, I. et al. The unfavorable piezoelectric impact of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater. 15, 78–84 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kim, J., Rabe, Okay. M. & Vanderbilt, D. Detrimental piezoelectric response of van der Waals layered bismuth tellurohalides. Phys. Rev. B 100, 104115 (2019).

    Article 
    CAS 

    Google Scholar 

  • Brehm, J. A. et al. Tunable quadruple-well ferroelectric van der Waals crystals. Nat. Mater. 19, 43–48 (2020).

    Article 
    CAS 

    Google Scholar 

  • Anderson, P. W. & Blount, E. Symmetry concerns on martensitic transformations: ‘ferroelectric’ metals? Phys. Rev. Lett. 14, 217–219 (1965).

    Article 
    CAS 

    Google Scholar 

  • Shi, Y. et al. A ferroelectric-like structural transition in a metallic. Nat. Mater. 12, 1024–1027 (2013).

    Article 
    CAS 

    Google Scholar 

  • Kim, T. et al. Polar metals by geometric design. Nature 533, 68–72 (2016).

    Article 
    CAS 

    Google Scholar 

  • Garcia, V. & Bibes, M. Ferroelectric tunnel junctions for info storage and processing. Nat. Commun. 5, 4289 (2014).

    Article 
    CAS 

    Google Scholar 

  • Wu, J. et al. Excessive tunnelling electroresistance in a ferroelectric van der Waals heterojunction through big barrier top modulation. Nat. Electron. 3, 466–472 (2020).

    Article 

    Google Scholar 

  • Su, Y. et al. Van der Waals multiferroic tunnel junctions. Nano Lett. 21, 175–181 (2020).

    Article 

    Google Scholar 

  • Khan, A. I., Keshavarzi, A. & Datta, S. The way forward for ferroelectric field-effect transistor know-how. Nat. Electron. 3, 588–597 (2020).

    Article 

    Google Scholar 

  • Reiner, J. W. et al. Crystalline oxides on silicon. Adv. Mater. 22, 2919–2938 (2010).

    Article 
    CAS 

    Google Scholar 

  • Huang, W. et al. Gate‐coupling‐enabled strong hysteresis for nonvolatile reminiscence and programmable rectifier in van der Waals ferroelectric heterojunctions. Adv. Mater. 32, 1908040 (2020).

    Article 
    CAS 

    Google Scholar 

  • Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wong, J. C. & Salahuddin, S. Detrimental capacitance transistors. Proc. IEEE 107, 49–62 (2018).

    Article 

    Google Scholar 

  • Wang, X. et al. Van der Waals unfavorable capacitance transistors. Nat. Commun. 10, 3037 (2019).

    Article 

    Google Scholar 

  • Manchon, A., Koo, H. C., Nitta, J., Frolov, S. & Duine, R. New views for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    Article 
    CAS 

    Google Scholar 

  • Fang, M. et al. Current advances in tunable spin–orbit coupling utilizing ferroelectricity. APL Mater. 9, 060704 (2021).

    Article 
    CAS 

    Google Scholar 

  • Di Sante, D., Barone, P., Bertacco, R. & Picozzi, S. Electrical management of the enormous Rashba impact in bulk GeTe. Adv. Mater. 25, 509–513 (2013).

    Article 

    Google Scholar 

  • Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric section strategy. Rev. Mod. Phys. 66, 899–915 (1994).

    Article 
    CAS 

    Google Scholar 

  • Vanderbilt, D. Berry Phases in Digital Construction Concept: Electrical Polarization, Orbital Magnetization and Topological Insulators (Cambridge Univ. Press, 2018).

  • Wang, H. & Qian, X. Ferroelectric nonlinear anomalous Corridor impact in few-layer WTe2. npj Comput. Mater. 5, 119 (2019).

    Article 
    CAS 

    Google Scholar 

  • Xiao, J. et al. Berry curvature reminiscence by way of electrically pushed stacking transitions. Nat. Phys. 16, 1028–1034 (2020).

    Article 
    CAS 

    Google Scholar 

  • Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhong, T., Li, X., Wu, M. & Liu, J.-M. Room-temperature multiferroicity and diversified magnetoelectric couplings in 2D supplies. Natl Sci. Rev. 7, 373–380 (2020).

    Article 
    CAS 

    Google Scholar 

  • Liu, X., Pyatakov, A. P. & Ren, W. Magnetoelectric coupling in multiferroic bilayer VS2. Phys. Rev. Lett. 125, 247601 (2020).

    Article 
    CAS 

    Google Scholar 

  • Xu, C. et al. Electrical-field switching of magnetic topological cost in type-I multiferroics. Phys. Rev. Lett. 125, 037203 (2020).

    Article 
    CAS 

    Google Scholar 

  • Huang, C. et al. Prediction of intrinsic ferromagnetic ferroelectricity in a transition-metal halide monolayer. Phys. Rev. Lett. 120, 147601 (2018).

    Article 

    Google Scholar 

  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential functions. Nat. Rev. Mater. 2, 17031 (2017).

    Article 
    CAS 

    Google Scholar 

  • Banerjee, S., Rowland, J., Erten, O. & Randeria, M. Enhanced stability of skyrmions in two-dimensional chiral magnets with Rashba spin–orbit coupling. Phys. Rev. X 4, 031045 (2014).

    CAS 

    Google Scholar 

  • Das, S. et al. Remark of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lin, L.-F., Zhang, Y., Moreo, A., Dagotto, E. & Dong, S. Annoyed dipole order induces noncollinear correct ferrielectricity in two dimensions. Phys. Rev. Lett. 123, 067601 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhao, H. J., Chen, P., Prosandeev, S., Artyukhin, S. & Bellaiche, L. Dzyaloshinskii–Moriya-like interplay in ferroelectrics and antiferroelectrics. Nat. Mater. 20, 341–345 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tagantsev, A. Okay., Stolichnov, I., Setter, N., Cross, J. S. & Tsukada, M. Non-Kolmogorov–Avrami switching kinetics in ferroelectric skinny movies. Phys. Rev. B 66, 214109 (2002).

    Article 

    Google Scholar 

  • Jiang, X. et al. Manipulation of present rectification in van der Waals ferroionic CuInP2S6. Nat. Commun. 13, 574 (2022).

    Article 
    CAS 

    Google Scholar 

  • Xue, F. et al. Two-dimensional ferroelectricity and antiferroelectricity for next-generation computing paradigms. Matter 5, 1999–2014 (2022).

    Article 
    CAS 

    Google Scholar 

  • Cui, C. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 18, 1253–1258 (2018).

    Article 
    CAS 

    Google Scholar 

  • Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).

    Article 
    CAS 

    Google Scholar 

  • Vasudevan, R. Okay., Balke, N., Maksymovych, P., Jesse, S. & Kalinin, S. V. Ferroelectric or non-ferroelectric: why so many supplies exhibit ‘ferroelectricity’ on the nanoscale. Appl. Phys. Rev. 4, 021302 (2017).

    Article 

    Google Scholar 

  • Paillard, C. et al. Photovoltaics with ferroelectrics: present standing and past. Adv. Mater. 28, 5153–5168 (2016).

    Article 
    CAS 

    Google Scholar 

  • Spanier, J. E. et al. Energy conversion effectivity exceeding the Shockley–Queisser restrict in a ferroelectric insulator. Nat. Photon. 10, 611–616 (2016).

  • Akamatsu, T. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic impact. Science 372, 68–72 (2021).

    Article 
    CAS 

    Google Scholar 

  • Jiang, J. et al. Flexo-photovoltaic impact in MoS2. Nat. Nanotechnol. 16, 894–901 (2021).

    Article 
    CAS 

    Google Scholar 

  • Li, Y. et al. Enhanced bulk photovoltaic impact in two-dimensional ferroelectric CuInP2S6. Nat. Commun. 12, 5896 (2021).

    Article 
    CAS 

    Google Scholar 

  • Choi, S. H. et al. Giant-scale synthesis of graphene and different 2D supplies in direction of industrialization. Nat. Commun. 13, 1484 (2022).

    Article 
    CAS 

    Google Scholar 

  • Koma, A. Van der Waals epitaxy for extremely lattice-mismatched techniques. J. Cryst. Development 201, 236–241 (1999).

    Article 

    Google Scholar 

  • Chu, Y. H. et al. Area management in multiferroic BiFeO3 by way of substrate vicinality. Adv. Mater. 19, 2662–2666 (2007).

    Article 
    CAS 

    Google Scholar 

  • Nguyen, V. L. et al. Layer-controlled single-crystalline graphene movie with stacking order through Cu–Si alloy formation. Nat. Nanotechnol. 15, 861–867 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, L. et al. Epitaxial progress of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    Article 
    CAS 

    Google Scholar 

  • Xu, X. et al. Seeded 2D epitaxy of large-area single-crystal movies of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wu, Z. et al. Giant-scale progress of few-layer two-dimensional black phosphorus. Nat. Mater. 20, 1203–1209 (2021).

    Article 
    CAS 

    Google Scholar 

  • Poh, S. M. et al. Molecular-beam epitaxy of two-dimensional In2Se3 and its big electroresistance switching in ferroresistive reminiscence junction. Nano Lett. 18, 6340–6346 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wang, X., Solar, Y. & Liu, Okay. Chemical and structural stability of 2D layered supplies. 2D Mater. 6, 042001 (2019).

    Article 
    CAS 

    Google Scholar 



  • Source_link

    Previous Post

    Economists and customers take part eurozone optimism

    Next Post

    Here is what you want to find out about choosing an executor to your will

    Dinero Post

    Dinero Post

    Next Post
    Here is what you want to find out about choosing an executor to your will

    Here is what you want to find out about choosing an executor to your will

    Search

    No Result
    View All Result

    Popular News

    • 2022 2023 2024 Medicare Half B IRMAA Premium MAGI Brackets

      2022 2023 2024 Medicare Half B IRMAA Premium MAGI Brackets

      0 shares
      Share 0 Tweet 0
    • The SI of Engineering Fracture Mechanics Journal – Hydrogen Embrittlement Subject, Printed Evaluation Papers.

      0 shares
      Share 0 Tweet 0
    • Discord and David Hume | The Enlightened Economist

      0 shares
      Share 0 Tweet 0
    • 13 Stunning Locations in Chicago That Each Native Must See

      0 shares
      Share 0 Tweet 0
    • Why governments get it fallacious

      0 shares
      Share 0 Tweet 0

    About Me

    Welcome to Dineropost The goal of Dineropost is to give you the absolute best news sources for any topic! Our topics are carefully curated and constantly updated as we know the web moves fast so we try to as well.

    Categories

    • Economy
    • Finance
    • Industry
    • Materials
    • Real Estate
    • Utilities Sector

    Site Links

    • Home
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms & Conditions

    Copyright © 2022 Dineropost.com | All Rights Reserved.

    No Result
    View All Result
    • Home
    • Economy
    • Finance
    • Industry
    • Real Estate
    • Utilities Sector
    • Materials

    Copyright © 2022 Dineropost.com | All Rights Reserved.