Valasek, J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475–481 (1921).
Google Scholar
Traces M. E. & Glass A. M. Ideas and Purposes of Ferroelectrics and Associated Supplies (Oxford Univ. Press, 2001).
Dawber, M., Rabe, Okay. & Scott, J. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).
Google Scholar
Gao, W., Zhu, Y., Wang, Y., Yuan, G. & Liu, J.-M. A assessment of versatile perovskite oxide ferroelectric movies and their software. J. Materiomics 6, 1–16 (2020).
Google Scholar
Pawley, G., Cochran, W., Cowley, R. & Dolling, G. Diatomic ferroelectrics. Phys. Rev. Lett. 17, 753–755 (1966).
Google Scholar
Brec, R. in Intercalation in Layered Supplies (ed. Dresselhaus, M. S.) 93–124 (Springer, 1986).
Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).
Google Scholar
Chang, Okay. et al. Discovery of strong in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).
Google Scholar
Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and different III2-VI3 van der Waals supplies. Nat. Commun. 8, 14956 (2017).
Google Scholar
Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508–5513 (2017).
Google Scholar
You, L. et al. In‐airplane ferroelectricity in skinny flakes of van der Waals hybrid perovskite. Adv. Mater. 30, 1803249 (2018).
Google Scholar
Fei, Z. et al. Ferroelectric switching of a two-dimensional metallic. Nature 560, 336–339 (2018).
Google Scholar
Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).
Google Scholar
Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 all the way down to the atomic monolayer restrict. Nat. Commun. 10, 1775 (2019).
Google Scholar
Barraza-Lopez, S., Fregoso, B. M., Villanova, J. W., Parkin, S. S. & Chang, Okay. Colloquium: Bodily properties of group-IV monochalcogenide monolayers. Rev. Mod. Phys. 93, 011001 (2021).
Google Scholar
Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).
Google Scholar
Yasuda, Okay., Wang, X., Watanabe, Okay., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).
Google Scholar
Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).
Google Scholar
Varotto, S. et al. Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride. Nat. Electron. 4, 740–747 (2021).
Google Scholar
Andersen, T. I. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 20, 480–487 (2021).
Google Scholar
Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metallic dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).
Google Scholar
Park, C. B. et al. Remark of spin‐induced ferroelectricity in a layered van der Waals antiferromagnet CuCrP2S6. Adv. Electron. Mater. 8, 2101072 (2022).
Google Scholar
Son, S. et al. Multiferroic enabled magnetic‐exciton in 2D quantum-entangled van der Waals antiferromagnet NiI2. Adv. Mater. 34, 2109144 (2021).
Google Scholar
Music, Q. et al. Proof for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).
Google Scholar
Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).
Google Scholar
Liu, Okay., Lu, J., Picozzi, S., Bellaiche, L. & Xiang, H. Intrinsic origin of enhancement of ferroelectricity in SnTe ultrathin movies. Phys. Rev. Lett. 121, 027601 (2018).
Google Scholar
Zhou, S. et al. Van der Waals layered ferroelectric CuInP2S6: bodily properties and gadget functions. Entrance. Phys. 16, 13301 (2021).
Google Scholar
Shirodkar, S. N. & Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 112, 157601 (2014).
Google Scholar
Leng, Okay., Fu, W., Liu, Y., Chhowalla, M. & Loh, Okay. P. From bulk to molecularly skinny hybrid perovskites. Nat. Rev. Mater. 5, 482–500 (2020).
Google Scholar
Hlinka, J. et al. Coexistence of the phonon and rest comfortable modes within the terahertz dielectric response of tetragonal BaTiO3. Phys. Rev. Lett. 101, 167402 (2008).
Google Scholar
Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).
Google Scholar
Rogée, L. et al. Ferroelectricity in untwisted heterobilayers of transition metallic dichalcogenides. Science 376, 973–978 (2022).
Google Scholar
Wang, J. (ed.) Multiferroic Supplies: Properties, Methods, and Purposes (CRC, 2016).
Kimura, T. et al. Magnetic management of ferroelectric polarization. Nature 426, 55–58 (2003).
Google Scholar
Zhang, J.-J. et al. Sort-II multiferroic Hf2VC2F2 MXene monolayer with excessive transition temperature. J. Am. Chem. Soc. 140, 9768–9773 (2018).
Google Scholar
Stengel, M. & Spaldin, N. A. Origin of the dielectric useless layer in nanoscale capacitors. Nature 443, 679–682 (2006).
Google Scholar
You, L. et al. Origin of big unfavorable piezoelectricity in a layered van der Waals ferroelectric. Sci. Adv. 5, eaav3780 (2019).
Google Scholar
Qi, Y. & Rappe, A. M. Widespread unfavorable longitudinal piezoelectric responses in ferroelectric crystals with layered constructions. Phys. Rev. Lett. 126, 217601 (2021).
Google Scholar
Katsouras, I. et al. The unfavorable piezoelectric impact of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater. 15, 78–84 (2016).
Google Scholar
Kim, J., Rabe, Okay. M. & Vanderbilt, D. Detrimental piezoelectric response of van der Waals layered bismuth tellurohalides. Phys. Rev. B 100, 104115 (2019).
Google Scholar
Brehm, J. A. et al. Tunable quadruple-well ferroelectric van der Waals crystals. Nat. Mater. 19, 43–48 (2020).
Google Scholar
Anderson, P. W. & Blount, E. Symmetry concerns on martensitic transformations: ‘ferroelectric’ metals? Phys. Rev. Lett. 14, 217–219 (1965).
Google Scholar
Shi, Y. et al. A ferroelectric-like structural transition in a metallic. Nat. Mater. 12, 1024–1027 (2013).
Google Scholar
Kim, T. et al. Polar metals by geometric design. Nature 533, 68–72 (2016).
Google Scholar
Garcia, V. & Bibes, M. Ferroelectric tunnel junctions for info storage and processing. Nat. Commun. 5, 4289 (2014).
Google Scholar
Wu, J. et al. Excessive tunnelling electroresistance in a ferroelectric van der Waals heterojunction through big barrier top modulation. Nat. Electron. 3, 466–472 (2020).
Google Scholar
Su, Y. et al. Van der Waals multiferroic tunnel junctions. Nano Lett. 21, 175–181 (2020).
Google Scholar
Khan, A. I., Keshavarzi, A. & Datta, S. The way forward for ferroelectric field-effect transistor know-how. Nat. Electron. 3, 588–597 (2020).
Google Scholar
Reiner, J. W. et al. Crystalline oxides on silicon. Adv. Mater. 22, 2919–2938 (2010).
Google Scholar
Huang, W. et al. Gate‐coupling‐enabled strong hysteresis for nonvolatile reminiscence and programmable rectifier in van der Waals ferroelectric heterojunctions. Adv. Mater. 32, 1908040 (2020).
Google Scholar
Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).
Google Scholar
Wong, J. C. & Salahuddin, S. Detrimental capacitance transistors. Proc. IEEE 107, 49–62 (2018).
Google Scholar
Wang, X. et al. Van der Waals unfavorable capacitance transistors. Nat. Commun. 10, 3037 (2019).
Google Scholar
Manchon, A., Koo, H. C., Nitta, J., Frolov, S. & Duine, R. New views for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).
Google Scholar
Fang, M. et al. Current advances in tunable spin–orbit coupling utilizing ferroelectricity. APL Mater. 9, 060704 (2021).
Google Scholar
Di Sante, D., Barone, P., Bertacco, R. & Picozzi, S. Electrical management of the enormous Rashba impact in bulk GeTe. Adv. Mater. 25, 509–513 (2013).
Google Scholar
Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric section strategy. Rev. Mod. Phys. 66, 899–915 (1994).
Google Scholar
Vanderbilt, D. Berry Phases in Digital Construction Concept: Electrical Polarization, Orbital Magnetization and Topological Insulators (Cambridge Univ. Press, 2018).
Wang, H. & Qian, X. Ferroelectric nonlinear anomalous Corridor impact in few-layer WTe2. npj Comput. Mater. 5, 119 (2019).
Google Scholar
Xiao, J. et al. Berry curvature reminiscence by way of electrically pushed stacking transitions. Nat. Phys. 16, 1028–1034 (2020).
Google Scholar
Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).
Google Scholar
Zhong, T., Li, X., Wu, M. & Liu, J.-M. Room-temperature multiferroicity and diversified magnetoelectric couplings in 2D supplies. Natl Sci. Rev. 7, 373–380 (2020).
Google Scholar
Liu, X., Pyatakov, A. P. & Ren, W. Magnetoelectric coupling in multiferroic bilayer VS2. Phys. Rev. Lett. 125, 247601 (2020).
Google Scholar
Xu, C. et al. Electrical-field switching of magnetic topological cost in type-I multiferroics. Phys. Rev. Lett. 125, 037203 (2020).
Google Scholar
Huang, C. et al. Prediction of intrinsic ferromagnetic ferroelectricity in a transition-metal halide monolayer. Phys. Rev. Lett. 120, 147601 (2018).
Google Scholar
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential functions. Nat. Rev. Mater. 2, 17031 (2017).
Google Scholar
Banerjee, S., Rowland, J., Erten, O. & Randeria, M. Enhanced stability of skyrmions in two-dimensional chiral magnets with Rashba spin–orbit coupling. Phys. Rev. X 4, 031045 (2014).
Google Scholar
Das, S. et al. Remark of room-temperature polar skyrmions. Nature 568, 368–372 (2019).
Google Scholar
Lin, L.-F., Zhang, Y., Moreo, A., Dagotto, E. & Dong, S. Annoyed dipole order induces noncollinear correct ferrielectricity in two dimensions. Phys. Rev. Lett. 123, 067601 (2019).
Google Scholar
Zhao, H. J., Chen, P., Prosandeev, S., Artyukhin, S. & Bellaiche, L. Dzyaloshinskii–Moriya-like interplay in ferroelectrics and antiferroelectrics. Nat. Mater. 20, 341–345 (2021).
Google Scholar
Tagantsev, A. Okay., Stolichnov, I., Setter, N., Cross, J. S. & Tsukada, M. Non-Kolmogorov–Avrami switching kinetics in ferroelectric skinny movies. Phys. Rev. B 66, 214109 (2002).
Google Scholar
Jiang, X. et al. Manipulation of present rectification in van der Waals ferroionic CuInP2S6. Nat. Commun. 13, 574 (2022).
Google Scholar
Xue, F. et al. Two-dimensional ferroelectricity and antiferroelectricity for next-generation computing paradigms. Matter 5, 1999–2014 (2022).
Google Scholar
Cui, C. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 18, 1253–1258 (2018).
Google Scholar
Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).
Google Scholar
Vasudevan, R. Okay., Balke, N., Maksymovych, P., Jesse, S. & Kalinin, S. V. Ferroelectric or non-ferroelectric: why so many supplies exhibit ‘ferroelectricity’ on the nanoscale. Appl. Phys. Rev. 4, 021302 (2017).
Google Scholar
Paillard, C. et al. Photovoltaics with ferroelectrics: present standing and past. Adv. Mater. 28, 5153–5168 (2016).
Google Scholar
Spanier, J. E. et al. Energy conversion effectivity exceeding the Shockley–Queisser restrict in a ferroelectric insulator. Nat. Photon. 10, 611–616 (2016).
Akamatsu, T. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic impact. Science 372, 68–72 (2021).
Google Scholar
Jiang, J. et al. Flexo-photovoltaic impact in MoS2. Nat. Nanotechnol. 16, 894–901 (2021).
Google Scholar
Li, Y. et al. Enhanced bulk photovoltaic impact in two-dimensional ferroelectric CuInP2S6. Nat. Commun. 12, 5896 (2021).
Google Scholar
Choi, S. H. et al. Giant-scale synthesis of graphene and different 2D supplies in direction of industrialization. Nat. Commun. 13, 1484 (2022).
Google Scholar
Koma, A. Van der Waals epitaxy for extremely lattice-mismatched techniques. J. Cryst. Development 201, 236–241 (1999).
Google Scholar
Chu, Y. H. et al. Area management in multiferroic BiFeO3 by way of substrate vicinality. Adv. Mater. 19, 2662–2666 (2007).
Google Scholar
Nguyen, V. L. et al. Layer-controlled single-crystalline graphene movie with stacking order through Cu–Si alloy formation. Nat. Nanotechnol. 15, 861–867 (2020).
Google Scholar
Wang, L. et al. Epitaxial progress of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).
Google Scholar
Xu, X. et al. Seeded 2D epitaxy of large-area single-crystal movies of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021).
Google Scholar
Wu, Z. et al. Giant-scale progress of few-layer two-dimensional black phosphorus. Nat. Mater. 20, 1203–1209 (2021).
Google Scholar
Poh, S. M. et al. Molecular-beam epitaxy of two-dimensional In2Se3 and its big electroresistance switching in ferroresistive reminiscence junction. Nano Lett. 18, 6340–6346 (2018).
Google Scholar
Wang, X., Solar, Y. & Liu, Okay. Chemical and structural stability of 2D layered supplies. 2D Mater. 6, 042001 (2019).
Google Scholar