• Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms & Conditions
No Result
View All Result
Dinero Post
  • Home
  • Economy
  • Finance
  • Industry
  • Real Estate
  • Utilities Sector
  • Materials
  • Home
  • Economy
  • Finance
  • Industry
  • Real Estate
  • Utilities Sector
  • Materials
No Result
View All Result
Dinero Post
No Result
View All Result

Inhibiting collective cation migration in Li-rich cathode supplies as a technique to mitigate voltage hysteresis

Dinero Post by Dinero Post
February 1, 2023
in Materials
0
Share on FacebookShare on Twitter


  • Goodenough, J. B. & Park, Ok.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article 
    CAS 

    Google Scholar 

  • Manthiram, A. An outlook on lithium ion battery expertise. ACS Cent. Sci. 3, 1063–1069 (2017).

    Article 
    CAS 

    Google Scholar 

  • Web optimization, D.-H. et al. The structural and chemical origin of the oxygen redox exercise in layered and cation-disordered Li-excess cathode supplies. Nat. Chem. 8, 692–697 (2016).

    Article 
    CAS 

    Google Scholar 

  • Nayak, P. Ok. et al. Assessment on challenges and up to date advances within the electrochemical efficiency of excessive capability Li- and Mn-rich cathode supplies for Li-ion batteries. Adv. Vitality Mater. 8, 1702397 (2018).

    Article 

    Google Scholar 

  • Gent, W. E. et al. Coupling between oxygen redox and cation migration explains uncommon electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    Article 

    Google Scholar 

  • Home, R. A. et al. First-cycle voltage hysteresis in Li-rich 3d cathodes related to molecular O2 trapped within the bulk. Nat. Vitality 5, 777–785 (2020).

    Article 
    CAS 

    Google Scholar 

  • Balasubramanian, M., McBreen, J., Davidson, I. J., Whitfield, P. S. & Kargina, I. In situ X-ray absorption research of a layered manganese-chromium oxide-based cathode materials. J. Electrochem. Soc. 149, A176–A184 (2002).

    Article 
    CAS 

    Google Scholar 

  • Lyu, Y. et al. Probing reversible multielectron switch and construction evolution of Li1.2Cr0.4Mn0.4O2 cathode materials for Li-ion batteries in a voltage vary of 1.0–4.8 V. Chem. Mater. 27, 5238–5252 (2015).

    Article 
    CAS 

    Google Scholar 

  • Ammundsen, B. et al. Native construction and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode materials. J. Electrochem. Soc. 149, A431–A436 (2002).

    Article 
    CAS 

    Google Scholar 

  • Lu, Z. & Dahn, J. R. In situ and ex situ XRD investigation of Li[CrxLi1/3−x/3Mn2/3−2x/3]O2 (x = 1/3) cathode materials. J. Electrochem. Soc. 150, A1044–A1051 (2003).

    Article 
    CAS 

    Google Scholar 

  • Lu, Z. & Dahn, J. R. Construction and electrochemistry of layered Li[CrxLi(1/3−x/3)Mn(2/3−2x/3)]O2. J. Electrochem. Soc. 149, A1454 (2002).

    Article 
    CAS 

    Google Scholar 

  • Zhang, L. & Noguchi, H. Novel layered Li Cr Ti O cathode supplies associated to the LiCrO2 Li2TiO3 strong resolution. J. Electrochem. Soc. 150, A601–A607 (2003).

    Article 
    CAS 

    Google Scholar 

  • Mi, X., Li, H. & Huang, X. Carbon-coated Li1.2Cr0.4Ti0.4O2 cathode materials for lithium-ion batteries. Electrochem. Stable State Lett. 9, A324–A327 (2006).

    Article 
    CAS 

    Google Scholar 

  • Zhang, L. & Noguchi, H. Novel layered Li–Cr–Ti–O cathode supplies for lithium rechargeable batteries. Electrochem. Commun. 4, 560–564 (2002).

    Article 
    CAS 

    Google Scholar 

  • Mi, X., Li, H. & Huang, X. Electrochemical and structural research of the carbon-coated Li[CrxLi(1/3−x/3)Ti(2/3−2x/3)]O2 (x=0.3, 0.35, 0.4, 0.45). J. Energy Sources 174, 867–871 (2007).

    Article 
    CAS 

    Google Scholar 

  • Eum, D. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020).

    Article 
    CAS 

    Google Scholar 

  • Boldyrev, V. V. Mechanochemistry and mechanical activation of solids. Russ. Chem. Rev. 75, 177–189 (2006).

    Article 
    CAS 

    Google Scholar 

  • Shi, T. et al. Shear-assisted formation of cation-disordered rocksalt NaMO2 (M = Fe or Mn). Chem. Mater. 30, 8811–8821 (2018).

    Article 
    CAS 

    Google Scholar 

  • Home, R. A. et al. Lithium manganese oxyfluoride as a brand new cathode materials exhibiting oxygen redox. Vitality Environ. Sci. 11, 926–932 (2018).

    Article 
    CAS 

    Google Scholar 

  • Luo, Ok. et al. Cost-compensation in 3d-transition-metal-oxide intercalation cathodes by the era of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    Article 
    CAS 

    Google Scholar 

  • Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode supplies. Nature 556, 185–190 (2018).

    Article 
    CAS 

    Google Scholar 

  • Takeda, N. et al. Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO2–x LiF (0 ≤ x ≤ 2) binary system. J. Energy Sources 367, 122–129 (2017).

    Article 
    CAS 

    Google Scholar 

  • Takeda, N., Ikeuchi, I., Natsui, R., Nakura, Ok. & Yabuuchi, N. Improved electrode efficiency of lithium-excess molybdenum oxyfluoride: titanium substitution with concentrated electrolyte. ACS Appl. Vitality Mater. 2, 1629–1633 (2019).

    Article 
    CAS 

    Google Scholar 

  • Suo, L. et al. Fluorine-donating electrolytes allow extremely reversible 5-V-class Li metallic batteries. Proc. Natl Acad. Sci. USA 115, 1156 LP–1151161 (2018).

    Article 

    Google Scholar 

  • Wang, J. et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).

    Article 
    CAS 

    Google Scholar 

  • Davenport, A. J. et al. In situ X‐ray absorption research of chromium valency modifications in passive oxides on sputtered AlCr skinny movies below electrochemical management. J. Electrochem. Soc. 138, 337–338 (1991).

    Article 
    CAS 

    Google Scholar 

  • Manceau, A. & Charlet, L. X-ray absorption spectroscopic research of the sorption of Cr(III) on the oxide-water interface: I. Molecular mechanism of Cr(III) oxidation on Mn oxides. J. Colloid Interface Sci. 148, 425–442 (1992).

    Article 
    CAS 

    Google Scholar 

  • Reed, J. & Ceder, G. Function of digital construction within the susceptibility of metastable transition-metal oxide constructions to transformation. Chem. Rev. 104, 4513–4534 (2004).

    Article 
    CAS 

    Google Scholar 

  • Reed, J., Ceder, G. & Van Der Ven, A. Layered-to-spinel section transition in LixMnO2. Electrochem. Stable State Lett. 4, A78 (2001).

    Article 
    CAS 

    Google Scholar 

  • Bréger, J. et al. Impact of excessive voltage on the construction and electrochemistry of LiNi0.5Mn0.5O2: a joint experimental and theoretical research. Chem. Mater. 18, 4768–4781 (2006).

    Article 

    Google Scholar 

  • Kim, S., Ma, X., Ong, S. P. & Ceder, G. A comparability of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali de-intercalation. Phys. Chem. Chem. Phys. 14, 15571–15578 (2012).

    Article 
    CAS 

    Google Scholar 

  • Bo, S.-H., Li, X., Toumar, A. J. & Ceder, G. Layered-to-rock-salt transformation in desodiated NaxCrO2 (x 0.4). Chem. Mater. 28, 1419–1429 (2016).

    Article 
    CAS 

    Google Scholar 

  • Lee, E. et al. Function of Cr3+/Cr6+ redox in chromium-substituted Li2MnO3·LiNi1/2Mn1/2O2 layered composite cathodes: electrochemistry and voltage fade. J. Mater. Chem. A 3, 9915–9924 (2015).

    Article 
    CAS 

    Google Scholar 

  • Karan, N. Ok. et al. Morphology, construction, and electrochemistry of solution-derived LiMn0.5−xCr2xNi0.5−xO2 for lithium-ion cells. J. Electrochem. Soc. 156, A553–A562 (2009).

    Article 
    CAS 

    Google Scholar 

  • Ren, S. et al. Improved voltage and biking for Li+ intercalation in high-capacity disordered oxyfluoride cathodes. Adv. Sci. 2, 1500128 (2015).

    Article 

    Google Scholar 

  • Huang, J. et al. Non-topotactic reactions allow excessive fee functionality in Li-rich cathode supplies. Nat. Vitality 6, 706–714 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zheng, X. et al. Reversible Mn/Cr twin redox in cation-disordered Li-excess cathode supplies for steady lithium ion batteries. Acta Mater. 212, 116935 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hoshino, S. et al. Reversible three-electron redox response of Mo3+/Mo6+ for rechargeable lithium batteries. ACS Vitality Lett. 2, 733–738 (2017).

    Article 
    CAS 

    Google Scholar 

  • Nakajima, M. & Yabuuchi, N. Lithium-excess cation-disordered rocksalt-type oxide with nanoscale section segregation: Li1.25Nb0.25V0.5O2. Chem. Mater. 29, 6927–6935 (2017).

    Article 
    CAS 

    Google Scholar 

  • Chen, R. et al. Disordered lithium-rich oxyfluoride as a steady host for enhanced Li+ intercalation storage. Adv. Vitality Mater. 5, 1401814 (2015).

    Article 

    Google Scholar 

  • Yamada, A., Tanaka, M., Tanaka, Ok. & Sekai, Ok. Jahn–Teller instability in spinel Li–Mn–O. J. Energy Sources 81–82, 73–78 (1999).

    Article 

    Google Scholar 

  • Zuo, C. et al. Double the capability of manganese spinel for lithium-ion storage by suppression of cooperative Jahn–Teller distortion. Adv. Vitality Mater. 10, 2000363 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: knowledge evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 
    CAS 

    Google Scholar 

  • Ravel, B. & Newville, M. ATHENA and ARTEMIS interactive graphical knowledge evaluation utilizing IFEFFIT. Phys. Scr. 2005, 1007 (2005).

    Article 

    Google Scholar 

  • Nelson, L. J., Hart, G. L. W., Zhou, F. & Ozoliņš, V. Compressive sensing as a paradigm for constructing physics fashions. Phys. Rev. B 87, 35125 (2013).

    Article 

    Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Effectivity of ab-initio complete vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar 

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U research. Phys. Rev. B 57, 1505–1509 (1998).

    Article 
    CAS 

    Google Scholar 

  • Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metallic oxides inside the GGA+U framework. Phys. Rev. B 73, 195107 (2006).

    Article 

    Google Scholar 

  • Solar, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density purposeful. Phys. Rev. Lett. 115, 36402 (2015).

    Article 

    Google Scholar 

  • Kitchaev, D. A. et al. Energetics of MnO2 polymorphs in density purposeful principle. Phys. Rev. B 93, 45132 (2016).

    Article 

    Google Scholar 

  • Kitchaev, D. A. et al. Design rules for prime transition metallic capability in disordered rocksalt Li-ion cathodes. Vitality Environ. Sci. 11, 2159–2171 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lun, Z. et al. Design rules for high-capacity Mn-based cation-disordered rocksalt cathodes. Chem 6, 153–168 (2020).

    Article 
    CAS 

    Google Scholar 

  • Richards, W. D., Dacek, S. T., Kitchaev, D. A. & Ceder, G. Fluorination of lithium-excess transition metallic oxide cathode supplies. Adv. Vitality Mater. 8, 1701533 (2018).

    Article 

    Google Scholar 

  • Ouyang, B. et al. Impact of fluorination on lithium transport and short-range order in disordered-rocksalt-type lithium-ion battery cathodes. Adv. Vitality Mater. 10, 1903240 (2020).

    Article 
    CAS 

    Google Scholar 

  • Vinckevičiūtė, J., Radin, M. D., Faenza, N. V., Amatucci, G. G. & Van der Ven, A. Basic insights about interlayer cation migration in Li-ion electrodes at excessive states of cost. J. Mater. Chem. A 7, 11996–12007 (2019).

    Article 

    Google Scholar 

  • Radin, M. D., Vinckeviciute, J., Seshadri, R. & Van der Ven, A. Manganese oxidation because the origin of the anomalous capability of Mn-containing Li-excess cathode supplies. Nat. Vitality 4, 639–646 (2019).

    Article 
    CAS 

    Google Scholar 



  • Source_link

    Previous Post

    Was Schindler Unimportant? – Econlib

    Next Post

    Are I Bonds A Good Funding?

    Dinero Post

    Dinero Post

    Next Post
    Are I Bonds A Good Funding?

    Are I Bonds A Good Funding?

    Search

    No Result
    View All Result

    Popular News

    • 2022 2023 2024 Medicare Half B IRMAA Premium MAGI Brackets

      2022 2023 2024 Medicare Half B IRMAA Premium MAGI Brackets

      0 shares
      Share 0 Tweet 0
    • The SI of Engineering Fracture Mechanics Journal – Hydrogen Embrittlement Subject, Printed Evaluation Papers.

      0 shares
      Share 0 Tweet 0
    • Discord and David Hume | The Enlightened Economist

      0 shares
      Share 0 Tweet 0
    • 13 Stunning Locations in Chicago That Each Native Must See

      0 shares
      Share 0 Tweet 0
    • Why governments get it fallacious

      0 shares
      Share 0 Tweet 0

    About Me

    Welcome to Dineropost The goal of Dineropost is to give you the absolute best news sources for any topic! Our topics are carefully curated and constantly updated as we know the web moves fast so we try to as well.

    Categories

    • Economy
    • Finance
    • Industry
    • Materials
    • Real Estate
    • Utilities Sector

    Site Links

    • Home
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms & Conditions

    Copyright © 2022 Dineropost.com | All Rights Reserved.

    No Result
    View All Result
    • Home
    • Economy
    • Finance
    • Industry
    • Real Estate
    • Utilities Sector
    • Materials

    Copyright © 2022 Dineropost.com | All Rights Reserved.