Goodenough, J. B. & Park, Ok.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).
Google Scholar
Manthiram, A. An outlook on lithium ion battery expertise. ACS Cent. Sci. 3, 1063–1069 (2017).
Google Scholar
Web optimization, D.-H. et al. The structural and chemical origin of the oxygen redox exercise in layered and cation-disordered Li-excess cathode supplies. Nat. Chem. 8, 692–697 (2016).
Google Scholar
Nayak, P. Ok. et al. Assessment on challenges and up to date advances within the electrochemical efficiency of excessive capability Li- and Mn-rich cathode supplies for Li-ion batteries. Adv. Vitality Mater. 8, 1702397 (2018).
Google Scholar
Gent, W. E. et al. Coupling between oxygen redox and cation migration explains uncommon electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).
Google Scholar
Home, R. A. et al. First-cycle voltage hysteresis in Li-rich 3d cathodes related to molecular O2 trapped within the bulk. Nat. Vitality 5, 777–785 (2020).
Google Scholar
Balasubramanian, M., McBreen, J., Davidson, I. J., Whitfield, P. S. & Kargina, I. In situ X-ray absorption research of a layered manganese-chromium oxide-based cathode materials. J. Electrochem. Soc. 149, A176–A184 (2002).
Google Scholar
Lyu, Y. et al. Probing reversible multielectron switch and construction evolution of Li1.2Cr0.4Mn0.4O2 cathode materials for Li-ion batteries in a voltage vary of 1.0–4.8 V. Chem. Mater. 27, 5238–5252 (2015).
Google Scholar
Ammundsen, B. et al. Native construction and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode materials. J. Electrochem. Soc. 149, A431–A436 (2002).
Google Scholar
Lu, Z. & Dahn, J. R. In situ and ex situ XRD investigation of Li[CrxLi1/3−x/3Mn2/3−2x/3]O2 (x = 1/3) cathode materials. J. Electrochem. Soc. 150, A1044–A1051 (2003).
Google Scholar
Lu, Z. & Dahn, J. R. Construction and electrochemistry of layered Li[CrxLi(1/3−x/3)Mn(2/3−2x/3)]O2. J. Electrochem. Soc. 149, A1454 (2002).
Google Scholar
Zhang, L. & Noguchi, H. Novel layered Li Cr Ti O cathode supplies associated to the LiCrO2 Li2TiO3 strong resolution. J. Electrochem. Soc. 150, A601–A607 (2003).
Google Scholar
Mi, X., Li, H. & Huang, X. Carbon-coated Li1.2Cr0.4Ti0.4O2 cathode materials for lithium-ion batteries. Electrochem. Stable State Lett. 9, A324–A327 (2006).
Google Scholar
Zhang, L. & Noguchi, H. Novel layered Li–Cr–Ti–O cathode supplies for lithium rechargeable batteries. Electrochem. Commun. 4, 560–564 (2002).
Google Scholar
Mi, X., Li, H. & Huang, X. Electrochemical and structural research of the carbon-coated Li[CrxLi(1/3−x/3)Ti(2/3−2x/3)]O2 (x=0.3, 0.35, 0.4, 0.45). J. Energy Sources 174, 867–871 (2007).
Google Scholar
Eum, D. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020).
Google Scholar
Boldyrev, V. V. Mechanochemistry and mechanical activation of solids. Russ. Chem. Rev. 75, 177–189 (2006).
Google Scholar
Shi, T. et al. Shear-assisted formation of cation-disordered rocksalt NaMO2 (M = Fe or Mn). Chem. Mater. 30, 8811–8821 (2018).
Google Scholar
Home, R. A. et al. Lithium manganese oxyfluoride as a brand new cathode materials exhibiting oxygen redox. Vitality Environ. Sci. 11, 926–932 (2018).
Google Scholar
Luo, Ok. et al. Cost-compensation in 3d-transition-metal-oxide intercalation cathodes by the era of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).
Google Scholar
Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode supplies. Nature 556, 185–190 (2018).
Google Scholar
Takeda, N. et al. Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO2–x LiF (0 ≤ x ≤ 2) binary system. J. Energy Sources 367, 122–129 (2017).
Google Scholar
Takeda, N., Ikeuchi, I., Natsui, R., Nakura, Ok. & Yabuuchi, N. Improved electrode efficiency of lithium-excess molybdenum oxyfluoride: titanium substitution with concentrated electrolyte. ACS Appl. Vitality Mater. 2, 1629–1633 (2019).
Google Scholar
Suo, L. et al. Fluorine-donating electrolytes allow extremely reversible 5-V-class Li metallic batteries. Proc. Natl Acad. Sci. USA 115, 1156 LP–1151161 (2018).
Google Scholar
Wang, J. et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).
Google Scholar
Davenport, A. J. et al. In situ X‐ray absorption research of chromium valency modifications in passive oxides on sputtered AlCr skinny movies below electrochemical management. J. Electrochem. Soc. 138, 337–338 (1991).
Google Scholar
Manceau, A. & Charlet, L. X-ray absorption spectroscopic research of the sorption of Cr(III) on the oxide-water interface: I. Molecular mechanism of Cr(III) oxidation on Mn oxides. J. Colloid Interface Sci. 148, 425–442 (1992).
Google Scholar
Reed, J. & Ceder, G. Function of digital construction within the susceptibility of metastable transition-metal oxide constructions to transformation. Chem. Rev. 104, 4513–4534 (2004).
Google Scholar
Reed, J., Ceder, G. & Van Der Ven, A. Layered-to-spinel section transition in LixMnO2. Electrochem. Stable State Lett. 4, A78 (2001).
Google Scholar
Bréger, J. et al. Impact of excessive voltage on the construction and electrochemistry of LiNi0.5Mn0.5O2: a joint experimental and theoretical research. Chem. Mater. 18, 4768–4781 (2006).
Google Scholar
Kim, S., Ma, X., Ong, S. P. & Ceder, G. A comparability of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali de-intercalation. Phys. Chem. Chem. Phys. 14, 15571–15578 (2012).
Google Scholar
Bo, S.-H., Li, X., Toumar, A. J. & Ceder, G. Layered-to-rock-salt transformation in desodiated NaxCrO2 (x 0.4). Chem. Mater. 28, 1419–1429 (2016).
Google Scholar
Lee, E. et al. Function of Cr3+/Cr6+ redox in chromium-substituted Li2MnO3·LiNi1/2Mn1/2O2 layered composite cathodes: electrochemistry and voltage fade. J. Mater. Chem. A 3, 9915–9924 (2015).
Google Scholar
Karan, N. Ok. et al. Morphology, construction, and electrochemistry of solution-derived LiMn0.5−xCr2xNi0.5−xO2 for lithium-ion cells. J. Electrochem. Soc. 156, A553–A562 (2009).
Google Scholar
Ren, S. et al. Improved voltage and biking for Li+ intercalation in high-capacity disordered oxyfluoride cathodes. Adv. Sci. 2, 1500128 (2015).
Google Scholar
Huang, J. et al. Non-topotactic reactions allow excessive fee functionality in Li-rich cathode supplies. Nat. Vitality 6, 706–714 (2021).
Google Scholar
Zheng, X. et al. Reversible Mn/Cr twin redox in cation-disordered Li-excess cathode supplies for steady lithium ion batteries. Acta Mater. 212, 116935 (2021).
Google Scholar
Hoshino, S. et al. Reversible three-electron redox response of Mo3+/Mo6+ for rechargeable lithium batteries. ACS Vitality Lett. 2, 733–738 (2017).
Google Scholar
Nakajima, M. & Yabuuchi, N. Lithium-excess cation-disordered rocksalt-type oxide with nanoscale section segregation: Li1.25Nb0.25V0.5O2. Chem. Mater. 29, 6927–6935 (2017).
Google Scholar
Chen, R. et al. Disordered lithium-rich oxyfluoride as a steady host for enhanced Li+ intercalation storage. Adv. Vitality Mater. 5, 1401814 (2015).
Google Scholar
Yamada, A., Tanaka, M., Tanaka, Ok. & Sekai, Ok. Jahn–Teller instability in spinel Li–Mn–O. J. Energy Sources 81–82, 73–78 (1999).
Google Scholar
Zuo, C. et al. Double the capability of manganese spinel for lithium-ion storage by suppression of cooperative Jahn–Teller distortion. Adv. Vitality Mater. 10, 2000363 (2020).
Google Scholar
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: knowledge evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
Google Scholar
Ravel, B. & Newville, M. ATHENA and ARTEMIS interactive graphical knowledge evaluation utilizing IFEFFIT. Phys. Scr. 2005, 1007 (2005).
Google Scholar
Nelson, L. J., Hart, G. L. W., Zhou, F. & Ozoliņš, V. Compressive sensing as a paradigm for constructing physics fashions. Phys. Rev. B 87, 35125 (2013).
Google Scholar
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758–1775 (1999).
Google Scholar
Kresse, G. & Furthmüller, J. Effectivity of ab-initio complete vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).
Google Scholar
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U research. Phys. Rev. B 57, 1505–1509 (1998).
Google Scholar
Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metallic oxides inside the GGA+U framework. Phys. Rev. B 73, 195107 (2006).
Google Scholar
Solar, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density purposeful. Phys. Rev. Lett. 115, 36402 (2015).
Google Scholar
Kitchaev, D. A. et al. Energetics of MnO2 polymorphs in density purposeful principle. Phys. Rev. B 93, 45132 (2016).
Google Scholar
Kitchaev, D. A. et al. Design rules for prime transition metallic capability in disordered rocksalt Li-ion cathodes. Vitality Environ. Sci. 11, 2159–2171 (2018).
Google Scholar
Lun, Z. et al. Design rules for high-capacity Mn-based cation-disordered rocksalt cathodes. Chem 6, 153–168 (2020).
Google Scholar
Richards, W. D., Dacek, S. T., Kitchaev, D. A. & Ceder, G. Fluorination of lithium-excess transition metallic oxide cathode supplies. Adv. Vitality Mater. 8, 1701533 (2018).
Google Scholar
Ouyang, B. et al. Impact of fluorination on lithium transport and short-range order in disordered-rocksalt-type lithium-ion battery cathodes. Adv. Vitality Mater. 10, 1903240 (2020).
Google Scholar
Vinckevičiūtė, J., Radin, M. D., Faenza, N. V., Amatucci, G. G. & Van der Ven, A. Basic insights about interlayer cation migration in Li-ion electrodes at excessive states of cost. J. Mater. Chem. A 7, 11996–12007 (2019).
Google Scholar
Radin, M. D., Vinckeviciute, J., Seshadri, R. & Van der Ven, A. Manganese oxidation because the origin of the anomalous capability of Mn-containing Li-excess cathode supplies. Nat. Vitality 4, 639–646 (2019).
Google Scholar