Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate constructions to useful supplies. Chem. Rev. 116, 11220–11289 (2016).
Google Scholar
Santos, P. J., Gabrys, P. A., Zornberg, L. Z., Lee, M. S. & Macfarlane, R. J. Macroscopic supplies assembled from nanoparticle superlattices. Nature 591, 586–591 (2021).
Google Scholar
Deng, Okay., Luo, Z., Tan, L. & Quan, Z. Self-assembly of anisotropic nanoparticles into useful superstructures. Chem. Soc. Rev. 49, 6002–6038 (2020).
Google Scholar
Paik, T., Diroll, B. T., Kagan, C. R. & Murray, C. B. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods. J. Am. Chem. Soc. 137, 6662–6669 (2015).
Google Scholar
Weidman, M. C., Nguyen, Q., Smilgies, D.-M. & Tisdale, W. A. Affect of measurement dispersity, ligand protection, and ligand size on the construction of PbS nanocrystal superlattices. Chem. Mater. 30, 807–816 (2018).
Google Scholar
Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Constructing units from colloidal quantum dots. Science 353, aac5523 (2016).
Liu, M. et al. Colloidal quantum dot electronics. Nat. Electron. 4, 548–558 (2021).
Google Scholar
Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum data science. Chem. Rev. 121, 3186–3233 (2020).
Google Scholar
García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).
Google Scholar
Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).
Google Scholar
Cherniukh, I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 593, 535–542 (2021).
Yazdani, N. et al. Nanocrystal superlattices as phonon-engineered solids and acoustic metamaterials. Nat. Commun. 10, 4236 (2019).
Google Scholar
Girard, A. et al. Mechanical coupling in gold nanoparticles supermolecules revealed by plasmon-enhanced ultralow frequency raman spectroscopy. Nano Lett. 16, 3843–3849 (2016).
Google Scholar
Mork, A. J., Lee, E. M. Y., Dahod, N. S., Willard, A. P. & Tisdale, W. A. Modulation of low-frequency acoustic vibrations in semiconductor nanocrystals by alternative of floor ligand. J. Phys. Chem. Lett. 7, 4213–4216 (2016).
Google Scholar
Saviot, L., Champagnon, B., Duval, E. & Ekimov, A. I. Measurement-selective resonant Raman scattering in CdS doped glasses. Phys. Rev. B 57, 341–346 (1998).
Google Scholar
Lee, E. M. Y., Mork, A. J., Willard, A. P. & Tisdale, W. A. Together with floor ligand results in continuum elastic fashions of nanocrystal vibrations. J. Chem. Phys. 147, 044711 (2017).
Google Scholar
Girard, A. et al. The mass load impact on the resonant acoustic frequencies of colloidal semiconductor nanoplatelets. Nanoscale 8, 13251–13256 (2016).
Google Scholar
Mattarelli, M., Montagna, M., Nonetheless, T., Schneider, D. & Fytas, G. Vibration spectroscopy of weakly interacting mesoscopic colloids. Mushy Matter 8, 4235–4243 (2012).
Google Scholar
Sadat, S. M. & Wang, R. Y. Colloidal nanocrystal superlattices as phononic crystals: airplane wave growth modeling of phonon band construction. RSC Adv. 6, 44578–44587 (2016).
Google Scholar
Jansen, M., Yazdani, N. & Wooden, V. Phonon-engineered solids constructed from nanocrystals. APL Mater. 7, 081124 (2019).
Google Scholar
Diroll, B. T., Kamysbayev, V., Coropceanu, I., Talapin, D. V. & Schaller, R. D. Warmth-driven acoustic phonons in lamellar nanoplatelet assemblies. Nanoscale 12, 9661–9668 (2020).
Google Scholar
Poyser, C. L. et al. Coherent acoustic phonons in colloidal semiconductor nanocrystal superlattices. ACS Nano 10, 1163–1169 (2016).
Google Scholar
Ruello, P. et al. Ultrafast acousto-plasmonics in gold nanoparticle superlattices. Phys. Rev. B 92, 174304 (2015).
Google Scholar
Lisiecki, I., Halté, V., Petit, C., Pileni, M. P. & Bigot, J. Y. Vibration dynamics of supra-crystals of cobalt nanocrystals studied with femtosecond laser pulses. Adv. Mater. 20, 4176–4179 (2008).
Google Scholar
Lisiecki, I. et al. Coherent longitudinal acoustic phonons in three-dimensional supracrystals of cobalt nanocrystals. Nano Lett. 13, 4914–4919 (2013).
Google Scholar
Gomopoulos, N., Cheng, W., Efremov, M., Nealey, P. F. & Fytas, G. Out-of-plane longitudinal elastic modulus of supported polymer skinny movies. Macromolecules 42, 7164–7167 (2009).
Google Scholar
Dhar, L., Rogers, J. A. & Nelson, Okay. A. Time-resolved vibrational spectroscopy within the impulsive restrict. Chem. Rev. 94, 157–193 (1994).
Google Scholar
Schnitzenbaumer, Okay. J. & Dukovic, G. Comparability of phonon damping conduct in quantum dots capped with natural and inorganic ligands. Nano Lett. 18, 3667–3674 (2018).
Google Scholar
Kambhampati, P. Sizzling exciton rest dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale. J. Phys. Chem. C 115, 22089–22109 (2011).
Google Scholar
Cerullo, G., De Silvestri, S. & Banin, U. Measurement-dependent dynamics of coherent acoustic phonons in nanocrystal quantum dots. Phys. Rev. B 60, 1928–1932 (1999).
Google Scholar
Diroll, B. T., Guo, P. & Schaller, R. D. Warmth switch at hybrid interfaces: interfacial ligand-to-nanocrystal heating monitored with infrared pump, digital probe spectroscopy. Nano Lett. 18, 7863–7869 (2018).
Google Scholar
Wang, Z. et al. Quantization of acoustic modes in dumbbell nanoparticles. Phys. Rev. Lett. 128, 48003 (2022).
Google Scholar
Graczykowski, B., Vogel, N., Bley, Okay., Butt, H.-J. & Fytas, G. Multiband hypersound filtering in two-dimensional colloidal crystals: adhesion, resonances, and periodicity. Nano Lett. 20, 1883–1889 (2020).
Google Scholar
Girard, A. et al. Acoustic mode hybridization in a single dimer of gold nanoparticles. Nano Lett. 18, 3800–3806 (2018).
Google Scholar
Girard, A. et al. Inelastic gentle scattering by a number of vibrational modes in particular person gold nanodimers. J. Phys. Chem. C 123, 14834–14841 (2019).
Google Scholar
Rolle, Okay., Yaremkevich, D., Scherbakov, A. V., Bayer, M. & Fytas, G. Lifting restrictions on coherence loss when characterizing non-transparent hypersonic phononic crystals. Sci. Rep. 11, 17174 (2021).
Google Scholar
Gupalov, S. V. & Merkulov, I. A. Idea of Raman gentle scattering by nanocrystal acoustic vibrations. Phys. Stable State 41, 1349–1358 (1999).
Google Scholar
Takagahara, T. Electron—phonon interactions in semiconductor nanocrystals. J. Lumin. 70, 129–143 (1996).
Google Scholar
Noual, A. et al. Optomechanic coupling in Ag polymer nanocomposite movies. J. Phys. Chem. C 125, 14854–14864 (2021).
Google Scholar
Zanjani, M. B. & Lukes, J. R. Form- and structure-based phonon bandgap tuning with nanocrystal superlattices. J. Phys. Chem. C 119, 16889–16896 (2015).
Google Scholar
Dahod, N. S., France-Lanord, A., Paritmongkol, W., Grossman, J. C. & Tisdale, W. A. Low-frequency Raman spectrum of 2D layered perovskites: native atomistic movement or superlattice modes? J. Chem. Phys. 153, 044710 (2020).
Google Scholar
Ong, W.-L., Majumdar, S., Malen, J. A. & McGaughey, A. J. H. Coupling of natural and inorganic vibrational states and their thermal transport in nanocrystal arrays. J. Phys. Chem. C 118, 7288–7295 (2014).
Google Scholar
Shao, C. & Shiomi, J. Negligible contribution of inter-dot coherent modes to warmth conduction in quantum-dot superlattice. Mater. At this time Phys. 22, 100601 (2022).
Google Scholar
Guo, P. et al. Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites. Nat. Commun. 9, 2019 (2018).
Google Scholar
Dreyer, A. et al. Organically linked iron oxide nanoparticle supercrystals with distinctive isotropic mechanical properties. Nat. Mater. 15, 522–528 (2016).
Google Scholar
Wang, Z. et al. Ligand crosslinking boosts thermal transport in colloidal nanocrystal solids. Angew. Chem. Int. Ed. 59, 9556–9563 (2020).
Google Scholar
Jansen, M., Juranyi, F., Yarema, O., Seydel, T. & Wooden, V. Ligand dynamics in nanocrystal solids studied with quasi-elastic neutron scattering. ACS Nano 15, 20517–20526 (2021).
Google Scholar
Martinet, Q. et al. Ligand-dependent nano-mechanical properties of CdSe nanoplatelets: calibrating nanobalances for ligand affinity monitoring. Nanoscale 13, 8639–8647 (2021).
Google Scholar
Stahley, J. B. & Zanjani, M. B. Multifarious colloidal constructions: new perception into ternary and quadripartite ordered assemblies. Nanoscale 13, 16554–16563 (2021).
Google Scholar
Ong, W.-L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Floor chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat. Mater. 12, 410–415 (2013).
Google Scholar
Cheng, W., Wang, J., Jonas, U., Fytas, G. & Stefanou, N. Commentary and tuning of hypersonic bandgaps in colloidal crystals. Nat. Mater. 5, 830–836 (2006).
Google Scholar
Maldovan, M. Sound and warmth revolutions in phononics. Nature 503, 209–217 (2013).
Google Scholar
Phillips, Okay. R. et al. A colloidoscope of colloid-based porous supplies and their makes use of. Chem. Soc. Rev. 45, 281–322 (2016).
Google Scholar
Vasileiadis, T. et al. Progress and views on phononic crystals. J. Appl. Phys. 129, 160901 (2021).
Google Scholar
Devkota, T., Yu, Okay. & Hartland, G. V. Mass loading results within the acoustic vibrations of gold nanoplates. Nanoscale 11, 16208–16213 (2019).
Volz, S. et al. Nanophononics: cutting-edge and views. Eur. Phys. J. B 89, 15 (2016).
Google Scholar
Cang, Y., Jin, Y., Djafari-Rouhani, B. & Fytas, G. Fundamentals, progress and views on high-frequency phononic crystals. J. Phys. D 55, 193002 (2022).
Wang, Y. F., Wang, Y. Z., Wu, B., Chen, W. & Wang, Y. S. Tunable and lively phononic crystals and metamaterials. Appl. Mech. Rev. 72, 040801 (2020).
Alonso-Redondo, E. et al. A brand new class of tunable hypersonic phononic crystals based mostly on polymer-tethered colloids. Nat. Commun. 6, 8309 (2015).
Google Scholar
Aryana, Okay. & Zanjani, M. B. Diamond household of colloidal supercrystals as phononic metamaterials. J. Appl. Phys. 123, 185103 (2018).
Google Scholar
Delsing, P. et al. The 2019 floor acoustic waves roadmap. J. Phys. D 52, 353001 (2019).
Vogele, A. et al. Quantum dot optomechanics in suspended nanophononic strings. Adv. Quantum Technol. 3, 1900102 (2020).
Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).
Google Scholar
Chu, Y. & Gröblacher, S. A perspective on hybrid quantum opto- and electromechanical methods. Appl. Phys. Lett. 117, 150503 (2020).
Google Scholar
Eichenfield, M., Chan, J., Camacho, R. M., Vahala, Okay. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).
Google Scholar
MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).
Google Scholar
Cunha, J. et al. Controlling gentle, warmth, and vibrations in plasmonics and phononics. Adv. Choose. Mater. 8, 2001225 (2020).
Google Scholar
Cargnello, M. et al. Substitutional doping in nanocrystal superlattices. Nature 524, 450–453 (2015).
Google Scholar
Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).
Google Scholar
Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural range in binary nanoparticle superlattices. Nature 439, 55–59 (2006).
Google Scholar
Cherniukh, I. et al. Form-directed co-assembly of lead halide perovskite nanocubes with dielectric nanodisks into binary nanocrystal superlattices. ACS Nano 15, 16488–16500 (2021).
Google Scholar
Mao, N. et al. Resonance-enhanced excitation of interlayer vibrations in atomically skinny black phosphorus. Nano Lett. 21, 4809–4815 (2021).
Google Scholar
Macfarlane, R. J. From nano to macro: pondering larger in nanoparticle meeting. Nano Lett. 21, 7432–7434 (2021).
Google Scholar
Vogel, N., de Viguerie, L., Jonas, U., Weiss, C. Okay. & Landfester, Okay. Wafer-scale fabrication of ordered binary colloidal monolayers with adjustable stoichiometries. Adv. Funct. Mater. 21, 3064–3073 (2011).
Google Scholar
Gaulding, E. A. et al. Deposition of wafer-scale single-component and binary nanocrystal superlattice skinny movies through dip-coating. Adv. Mater. 27, 2846–2851 (2015).
Google Scholar
Barad, H. N., Kwon, H., Alarcón-Correa, M. & Fischer, P. Massive space patterning of nanoparticles and nanostructures: present standing and future prospects. ACS Nano 15, 5861–5875 (2021).
Google Scholar
Si, Okay. J., Chen, Y., Shi, Q. & Cheng, W. Nanoparticle superlattices: the roles of soppy ligands. Adv. Sci. 5, 1700179 (2018).
Google Scholar
Weidman, M. C., Smilgies, D.-M. & Tisdale, W. A. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering. Nat. Mater. 15, 775–781 (2016).
Google Scholar
Winslow, S. W., Swan, J. W. & Tisdale, W. A. The significance of unbound ligand in nanocrystal superlattice formation. J. Am. Chem. Soc. 142, 9675–9685 (2020).
Google Scholar
Winslow, S. W., Smilgies, D. M., Swan, J. W. & Tisdale, W. A. Reversible temperature-induced structural transformations in PbS nanocrystal superlattices. J. Phys. Chem. C 124, 13456–13466 (2020).
Google Scholar
Boles, M. A. & Talapin, D. V. Many-body results in nanocrystal superlattices: departure from sphere packing explains stability of binary phases. J. Am. Chem. Soc. 137, 4494–4502 (2015).
Google Scholar
Schulz, F., Lokteva, I., Parak, W. J. & Lehmkühler, F. Latest notable approaches to check self‐meeting of nanoparticles with X‐ray scattering and electron microscopy. Half. Half. Syst. Charact. 38, 2100087 (2021).
Google Scholar
Jishkariani, D. et al. Nanocrystal core measurement and form substitutional doping and underlying crystalline order in nanocrystal superlattices article. ACS Nano 13, 5712–5719 (2019).
Google Scholar
Coropceanu, I. et al. Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals. Science 375, 1422–1426 (2022).
Google Scholar
Begley, M. R., Gianola, D. S. & Ray, T. R. Bridging useful nanocomposites to strong macroscale units. Science 364, eaav4299 (2019).
Google Scholar