• Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms & Conditions
No Result
View All Result
Dinero Post
  • Home
  • Economy
  • Finance
  • Industry
  • Real Estate
  • Utilities Sector
  • Materials
  • Home
  • Economy
  • Finance
  • Industry
  • Real Estate
  • Utilities Sector
  • Materials
No Result
View All Result
Dinero Post
No Result
View All Result

Nanocrystal phononics | Nature Supplies

Dinero Post by Dinero Post
January 27, 2023
in Materials
0
Share on FacebookShare on Twitter


  • Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate constructions to useful supplies. Chem. Rev. 116, 11220–11289 (2016).

    Article 
    CAS 

    Google Scholar 

  • Santos, P. J., Gabrys, P. A., Zornberg, L. Z., Lee, M. S. & Macfarlane, R. J. Macroscopic supplies assembled from nanoparticle superlattices. Nature 591, 586–591 (2021).

    Article 
    CAS 

    Google Scholar 

  • Deng, Okay., Luo, Z., Tan, L. & Quan, Z. Self-assembly of anisotropic nanoparticles into useful superstructures. Chem. Soc. Rev. 49, 6002–6038 (2020).

    Article 
    CAS 

    Google Scholar 

  • Paik, T., Diroll, B. T., Kagan, C. R. & Murray, C. B. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods. J. Am. Chem. Soc. 137, 6662–6669 (2015).

    Article 
    CAS 

    Google Scholar 

  • Weidman, M. C., Nguyen, Q., Smilgies, D.-M. & Tisdale, W. A. Affect of measurement dispersity, ligand protection, and ligand size on the construction of PbS nanocrystal superlattices. Chem. Mater. 30, 807–816 (2018).

    Article 
    CAS 

    Google Scholar 

  • Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Constructing units from colloidal quantum dots. Science 353, aac5523 (2016).

  • Liu, M. et al. Colloidal quantum dot electronics. Nat. Electron. 4, 548–558 (2021).

    Article 

    Google Scholar 

  • Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum data science. Chem. Rev. 121, 3186–3233 (2020).

    Article 

    Google Scholar 

  • García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

    Article 

    Google Scholar 

  • Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    Article 

    Google Scholar 

  • Cherniukh, I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 593, 535–542 (2021).

  • Yazdani, N. et al. Nanocrystal superlattices as phonon-engineered solids and acoustic metamaterials. Nat. Commun. 10, 4236 (2019).

    Article 

    Google Scholar 

  • Girard, A. et al. Mechanical coupling in gold nanoparticles supermolecules revealed by plasmon-enhanced ultralow frequency raman spectroscopy. Nano Lett. 16, 3843–3849 (2016).

    Article 
    CAS 

    Google Scholar 

  • Mork, A. J., Lee, E. M. Y., Dahod, N. S., Willard, A. P. & Tisdale, W. A. Modulation of low-frequency acoustic vibrations in semiconductor nanocrystals by alternative of floor ligand. J. Phys. Chem. Lett. 7, 4213–4216 (2016).

    Article 
    CAS 

    Google Scholar 

  • Saviot, L., Champagnon, B., Duval, E. & Ekimov, A. I. Measurement-selective resonant Raman scattering in CdS doped glasses. Phys. Rev. B 57, 341–346 (1998).

    Article 
    CAS 

    Google Scholar 

  • Lee, E. M. Y., Mork, A. J., Willard, A. P. & Tisdale, W. A. Together with floor ligand results in continuum elastic fashions of nanocrystal vibrations. J. Chem. Phys. 147, 044711 (2017).

    Article 

    Google Scholar 

  • Girard, A. et al. The mass load impact on the resonant acoustic frequencies of colloidal semiconductor nanoplatelets. Nanoscale 8, 13251–13256 (2016).

    Article 
    CAS 

    Google Scholar 

  • Mattarelli, M., Montagna, M., Nonetheless, T., Schneider, D. & Fytas, G. Vibration spectroscopy of weakly interacting mesoscopic colloids. Mushy Matter 8, 4235–4243 (2012).

    Article 
    CAS 

    Google Scholar 

  • Sadat, S. M. & Wang, R. Y. Colloidal nanocrystal superlattices as phononic crystals: airplane wave growth modeling of phonon band construction. RSC Adv. 6, 44578–44587 (2016).

    Article 
    CAS 

    Google Scholar 

  • Jansen, M., Yazdani, N. & Wooden, V. Phonon-engineered solids constructed from nanocrystals. APL Mater. 7, 081124 (2019).

    Article 

    Google Scholar 

  • Diroll, B. T., Kamysbayev, V., Coropceanu, I., Talapin, D. V. & Schaller, R. D. Warmth-driven acoustic phonons in lamellar nanoplatelet assemblies. Nanoscale 12, 9661–9668 (2020).

    Article 
    CAS 

    Google Scholar 

  • Poyser, C. L. et al. Coherent acoustic phonons in colloidal semiconductor nanocrystal superlattices. ACS Nano 10, 1163–1169 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ruello, P. et al. Ultrafast acousto-plasmonics in gold nanoparticle superlattices. Phys. Rev. B 92, 174304 (2015).

    Article 

    Google Scholar 

  • Lisiecki, I., Halté, V., Petit, C., Pileni, M. P. & Bigot, J. Y. Vibration dynamics of supra-crystals of cobalt nanocrystals studied with femtosecond laser pulses. Adv. Mater. 20, 4176–4179 (2008).

    CAS 

    Google Scholar 

  • Lisiecki, I. et al. Coherent longitudinal acoustic phonons in three-dimensional supracrystals of cobalt nanocrystals. Nano Lett. 13, 4914–4919 (2013).

    Article 
    CAS 

    Google Scholar 

  • Gomopoulos, N., Cheng, W., Efremov, M., Nealey, P. F. & Fytas, G. Out-of-plane longitudinal elastic modulus of supported polymer skinny movies. Macromolecules 42, 7164–7167 (2009).

    Article 
    CAS 

    Google Scholar 

  • Dhar, L., Rogers, J. A. & Nelson, Okay. A. Time-resolved vibrational spectroscopy within the impulsive restrict. Chem. Rev. 94, 157–193 (1994).

    Article 
    CAS 

    Google Scholar 

  • Schnitzenbaumer, Okay. J. & Dukovic, G. Comparability of phonon damping conduct in quantum dots capped with natural and inorganic ligands. Nano Lett. 18, 3667–3674 (2018).

    Article 
    CAS 

    Google Scholar 

  • Kambhampati, P. Sizzling exciton rest dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale. J. Phys. Chem. C 115, 22089–22109 (2011).

    Article 
    CAS 

    Google Scholar 

  • Cerullo, G., De Silvestri, S. & Banin, U. Measurement-dependent dynamics of coherent acoustic phonons in nanocrystal quantum dots. Phys. Rev. B 60, 1928–1932 (1999).

    Article 
    CAS 

    Google Scholar 

  • Diroll, B. T., Guo, P. & Schaller, R. D. Warmth switch at hybrid interfaces: interfacial ligand-to-nanocrystal heating monitored with infrared pump, digital probe spectroscopy. Nano Lett. 18, 7863–7869 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wang, Z. et al. Quantization of acoustic modes in dumbbell nanoparticles. Phys. Rev. Lett. 128, 48003 (2022).

    Article 
    CAS 

    Google Scholar 

  • Graczykowski, B., Vogel, N., Bley, Okay., Butt, H.-J. & Fytas, G. Multiband hypersound filtering in two-dimensional colloidal crystals: adhesion, resonances, and periodicity. Nano Lett. 20, 1883–1889 (2020).

    Article 
    CAS 

    Google Scholar 

  • Girard, A. et al. Acoustic mode hybridization in a single dimer of gold nanoparticles. Nano Lett. 18, 3800–3806 (2018).

    Article 
    CAS 

    Google Scholar 

  • Girard, A. et al. Inelastic gentle scattering by a number of vibrational modes in particular person gold nanodimers. J. Phys. Chem. C 123, 14834–14841 (2019).

    Article 
    CAS 

    Google Scholar 

  • Rolle, Okay., Yaremkevich, D., Scherbakov, A. V., Bayer, M. & Fytas, G. Lifting restrictions on coherence loss when characterizing non-transparent hypersonic phononic crystals. Sci. Rep. 11, 17174 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gupalov, S. V. & Merkulov, I. A. Idea of Raman gentle scattering by nanocrystal acoustic vibrations. Phys. Stable State 41, 1349–1358 (1999).

    Article 
    CAS 

    Google Scholar 

  • Takagahara, T. Electron—phonon interactions in semiconductor nanocrystals. J. Lumin. 70, 129–143 (1996).

    Article 
    CAS 

    Google Scholar 

  • Noual, A. et al. Optomechanic coupling in Ag polymer nanocomposite movies. J. Phys. Chem. C 125, 14854–14864 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zanjani, M. B. & Lukes, J. R. Form- and structure-based phonon bandgap tuning with nanocrystal superlattices. J. Phys. Chem. C 119, 16889–16896 (2015).

    Article 
    CAS 

    Google Scholar 

  • Dahod, N. S., France-Lanord, A., Paritmongkol, W., Grossman, J. C. & Tisdale, W. A. Low-frequency Raman spectrum of 2D layered perovskites: native atomistic movement or superlattice modes? J. Chem. Phys. 153, 044710 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ong, W.-L., Majumdar, S., Malen, J. A. & McGaughey, A. J. H. Coupling of natural and inorganic vibrational states and their thermal transport in nanocrystal arrays. J. Phys. Chem. C 118, 7288–7295 (2014).

    Article 
    CAS 

    Google Scholar 

  • Shao, C. & Shiomi, J. Negligible contribution of inter-dot coherent modes to warmth conduction in quantum-dot superlattice. Mater. At this time Phys. 22, 100601 (2022).

    Article 
    CAS 

    Google Scholar 

  • Guo, P. et al. Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites. Nat. Commun. 9, 2019 (2018).

    Article 

    Google Scholar 

  • Dreyer, A. et al. Organically linked iron oxide nanoparticle supercrystals with distinctive isotropic mechanical properties. Nat. Mater. 15, 522–528 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wang, Z. et al. Ligand crosslinking boosts thermal transport in colloidal nanocrystal solids. Angew. Chem. Int. Ed. 59, 9556–9563 (2020).

    Article 
    CAS 

    Google Scholar 

  • Jansen, M., Juranyi, F., Yarema, O., Seydel, T. & Wooden, V. Ligand dynamics in nanocrystal solids studied with quasi-elastic neutron scattering. ACS Nano 15, 20517–20526 (2021).

    Article 
    CAS 

    Google Scholar 

  • Martinet, Q. et al. Ligand-dependent nano-mechanical properties of CdSe nanoplatelets: calibrating nanobalances for ligand affinity monitoring. Nanoscale 13, 8639–8647 (2021).

    Article 
    CAS 

    Google Scholar 

  • Stahley, J. B. & Zanjani, M. B. Multifarious colloidal constructions: new perception into ternary and quadripartite ordered assemblies. Nanoscale 13, 16554–16563 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ong, W.-L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Floor chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat. Mater. 12, 410–415 (2013).

    Article 
    CAS 

    Google Scholar 

  • Cheng, W., Wang, J., Jonas, U., Fytas, G. & Stefanou, N. Commentary and tuning of hypersonic bandgaps in colloidal crystals. Nat. Mater. 5, 830–836 (2006).

    Article 
    CAS 

    Google Scholar 

  • Maldovan, M. Sound and warmth revolutions in phononics. Nature 503, 209–217 (2013).

    Article 
    CAS 

    Google Scholar 

  • Phillips, Okay. R. et al. A colloidoscope of colloid-based porous supplies and their makes use of. Chem. Soc. Rev. 45, 281–322 (2016).

    Article 
    CAS 

    Google Scholar 

  • Vasileiadis, T. et al. Progress and views on phononic crystals. J. Appl. Phys. 129, 160901 (2021).

    Article 
    CAS 

    Google Scholar 

  • Devkota, T., Yu, Okay. & Hartland, G. V. Mass loading results within the acoustic vibrations of gold nanoplates. Nanoscale 11, 16208–16213 (2019).

  • Volz, S. et al. Nanophononics: cutting-edge and views. Eur. Phys. J. B 89, 15 (2016).

    Article 

    Google Scholar 

  • Cang, Y., Jin, Y., Djafari-Rouhani, B. & Fytas, G. Fundamentals, progress and views on high-frequency phononic crystals. J. Phys. D 55, 193002 (2022).

  • Wang, Y. F., Wang, Y. Z., Wu, B., Chen, W. & Wang, Y. S. Tunable and lively phononic crystals and metamaterials. Appl. Mech. Rev. 72, 040801 (2020).

  • Alonso-Redondo, E. et al. A brand new class of tunable hypersonic phononic crystals based mostly on polymer-tethered colloids. Nat. Commun. 6, 8309 (2015).

    Article 
    CAS 

    Google Scholar 

  • Aryana, Okay. & Zanjani, M. B. Diamond household of colloidal supercrystals as phononic metamaterials. J. Appl. Phys. 123, 185103 (2018).

    Article 

    Google Scholar 

  • Delsing, P. et al. The 2019 floor acoustic waves roadmap. J. Phys. D 52, 353001 (2019).

  • Vogele, A. et al. Quantum dot optomechanics in suspended nanophononic strings. Adv. Quantum Technol. 3, 1900102 (2020).

  • Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

    Article 
    CAS 

    Google Scholar 

  • Chu, Y. & Gröblacher, S. A perspective on hybrid quantum opto- and electromechanical methods. Appl. Phys. Lett. 117, 150503 (2020).

    Article 
    CAS 

    Google Scholar 

  • Eichenfield, M., Chan, J., Camacho, R. M., Vahala, Okay. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    Article 
    CAS 

    Google Scholar 

  • MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

    Article 
    CAS 

    Google Scholar 

  • Cunha, J. et al. Controlling gentle, warmth, and vibrations in plasmonics and phononics. Adv. Choose. Mater. 8, 2001225 (2020).

    Article 
    CAS 

    Google Scholar 

  • Cargnello, M. et al. Substitutional doping in nanocrystal superlattices. Nature 524, 450–453 (2015).

    Article 
    CAS 

    Google Scholar 

  • Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).

    Article 
    CAS 

    Google Scholar 

  • Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural range in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article 
    CAS 

    Google Scholar 

  • Cherniukh, I. et al. Form-directed co-assembly of lead halide perovskite nanocubes with dielectric nanodisks into binary nanocrystal superlattices. ACS Nano 15, 16488–16500 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mao, N. et al. Resonance-enhanced excitation of interlayer vibrations in atomically skinny black phosphorus. Nano Lett. 21, 4809–4815 (2021).

    Article 
    CAS 

    Google Scholar 

  • Macfarlane, R. J. From nano to macro: pondering larger in nanoparticle meeting. Nano Lett. 21, 7432–7434 (2021).

    Article 
    CAS 

    Google Scholar 

  • Vogel, N., de Viguerie, L., Jonas, U., Weiss, C. Okay. & Landfester, Okay. Wafer-scale fabrication of ordered binary colloidal monolayers with adjustable stoichiometries. Adv. Funct. Mater. 21, 3064–3073 (2011).

    Article 
    CAS 

    Google Scholar 

  • Gaulding, E. A. et al. Deposition of wafer-scale single-component and binary nanocrystal superlattice skinny movies through dip-coating. Adv. Mater. 27, 2846–2851 (2015).

    Article 
    CAS 

    Google Scholar 

  • Barad, H. N., Kwon, H., Alarcón-Correa, M. & Fischer, P. Massive space patterning of nanoparticles and nanostructures: present standing and future prospects. ACS Nano 15, 5861–5875 (2021).

    Article 
    CAS 

    Google Scholar 

  • Si, Okay. J., Chen, Y., Shi, Q. & Cheng, W. Nanoparticle superlattices: the roles of soppy ligands. Adv. Sci. 5, 1700179 (2018).

    Article 

    Google Scholar 

  • Weidman, M. C., Smilgies, D.-M. & Tisdale, W. A. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering. Nat. Mater. 15, 775–781 (2016).

    Article 
    CAS 

    Google Scholar 

  • Winslow, S. W., Swan, J. W. & Tisdale, W. A. The significance of unbound ligand in nanocrystal superlattice formation. J. Am. Chem. Soc. 142, 9675–9685 (2020).

    CAS 

    Google Scholar 

  • Winslow, S. W., Smilgies, D. M., Swan, J. W. & Tisdale, W. A. Reversible temperature-induced structural transformations in PbS nanocrystal superlattices. J. Phys. Chem. C 124, 13456–13466 (2020).

    Article 
    CAS 

    Google Scholar 

  • Boles, M. A. & Talapin, D. V. Many-body results in nanocrystal superlattices: departure from sphere packing explains stability of binary phases. J. Am. Chem. Soc. 137, 4494–4502 (2015).

    Article 
    CAS 

    Google Scholar 

  • Schulz, F., Lokteva, I., Parak, W. J. & Lehmkühler, F. Latest notable approaches to check self‐meeting of nanoparticles with X‐ray scattering and electron microscopy. Half. Half. Syst. Charact. 38, 2100087 (2021).

    Article 

    Google Scholar 

  • Jishkariani, D. et al. Nanocrystal core measurement and form substitutional doping and underlying crystalline order in nanocrystal superlattices article. ACS Nano 13, 5712–5719 (2019).

    Article 
    CAS 

    Google Scholar 

  • Coropceanu, I. et al. Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals. Science 375, 1422–1426 (2022).

    Article 
    CAS 

    Google Scholar 

  • Begley, M. R., Gianola, D. S. & Ray, T. R. Bridging useful nanocomposites to strong macroscale units. Science 364, eaav4299 (2019).

    Article 
    CAS 

    Google Scholar 



  • Source_link

    Previous Post

    No Insurance coverage? Right here’s How To Get Low cost or Free Eye Examination and Prescription Glasses

    Next Post

    Getting Severe about Carbon Dioxide Elimination

    Dinero Post

    Dinero Post

    Next Post
    Getting Severe about Carbon Dioxide Elimination

    Getting Severe about Carbon Dioxide Elimination

    Search

    No Result
    View All Result

    Popular News

    • 2022 2023 2024 Medicare Half B IRMAA Premium MAGI Brackets

      2022 2023 2024 Medicare Half B IRMAA Premium MAGI Brackets

      0 shares
      Share 0 Tweet 0
    • The SI of Engineering Fracture Mechanics Journal – Hydrogen Embrittlement Subject, Printed Evaluation Papers.

      0 shares
      Share 0 Tweet 0
    • Discord and David Hume | The Enlightened Economist

      0 shares
      Share 0 Tweet 0
    • 13 Stunning Locations in Chicago That Each Native Must See

      0 shares
      Share 0 Tweet 0
    • Why governments get it fallacious

      0 shares
      Share 0 Tweet 0

    About Me

    Welcome to Dineropost The goal of Dineropost is to give you the absolute best news sources for any topic! Our topics are carefully curated and constantly updated as we know the web moves fast so we try to as well.

    Categories

    • Economy
    • Finance
    • Industry
    • Materials
    • Real Estate
    • Utilities Sector

    Site Links

    • Home
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms & Conditions

    Copyright © 2022 Dineropost.com | All Rights Reserved.

    No Result
    View All Result
    • Home
    • Economy
    • Finance
    • Industry
    • Real Estate
    • Utilities Sector
    • Materials

    Copyright © 2022 Dineropost.com | All Rights Reserved.