Fu, L. & Kane, C. L. Superconducting proximity impact and Majorana fermions on the floor of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).
Google Scholar
Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
Google Scholar
Shabani, J. et al. Two-dimensional epitaxial superconductor-semiconductor heterostructures: a platform for topological superconducting networks. Phys. Rev. B 93, 155402 (2016).
Google Scholar
Frolov, S. M., Manfra, M. J. & Sau, J. D. Topological superconductivity in hybrid units. Nat. Phys. 16, 718–724 (2020).
Google Scholar
Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire units. Science 336, 1003–1007 (2012).
Google Scholar
Wang, M. X. et al. The coexistence of superconductivity and topological order within the Bi2Se3 skinny movies. Science 336, 52–55 (2012).
Google Scholar
Xu, J. P. et al. Synthetic topological superconductor by the proximity impact. Phys. Rev. Lett. 112, 217001 (2014).
Google Scholar
Xu, J. P. et al. Experimental detection of a majorana mode within the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 017001 (2015).
Google Scholar
Zang, Y. Y. et al. Competing power scales in topological superconducting heterostructures. Nano Lett. 21, 2758–2765 (2021).
Google Scholar
Zhang, H. et al. Two-step progress of high-quality Nb/(Bi0.5Sb0.5)2Te3/Nb heterostructures for topological Josephson junctions. J. Mater. Res. 33, 2423–2433 (2018).
Google Scholar
Dai, W. Q. et al. Proximity-effect-induced superconducting hole in topological floor states – a degree contact spectroscopy examine of NbSe2/Bi2Se3 superconductor-topological Insulator heterostructures. Sci. Rep. 7, 7631 (2017).
Google Scholar
Williams, J. R. et al. Unconventional Josephson impact in hybrid superconductor-topological insulator units. Phys. Rev. Lett. 109, 056803 (2012).
Google Scholar
Kurter, C., Finck, A. D. Ok., Hor, Y. S. & Van Harlingen, D. J. Proof for an anomalous present–section relation in topological insulator Josephson junctions. Nat. Commun. 6, 7130 (2015).
Google Scholar
Kayyalha, M. et al. Anomalous low-temperature enhancement of supercurrent in topological-insulator nanoribbon Josephson junctions: proof for low-energy Andreev sure states. Phys. Rev. Lett. 122, 047003 (2019).
Google Scholar
Briggs, N. et al. Atomically skinny half-van der Waals metals enabled by confinement heteroepitaxy. Nat. Mater. 19, 637–643 (2020).
Google Scholar
El-Sherif, H. et al. Scalable characterization of 2D gallium-intercalated epitaxial graphene. ACS Appl. Mater. Inter. 13, 55428–55439 (2021).
Google Scholar
Wetherington, M. T. et al. 2-dimensional polar metals: a low-frequency Raman scattering examine. 2D Mater. 8, 041003 (2021).
Google Scholar
Gregory, W. D., Sheahen, T. P. & Cochran, J. Superconducting transition and significant subject of pure gallium single crystals. Phys. Rev. 150, 315–321 (1966).
Google Scholar
Zhang, J. et al. Band construction engineering in (Bi1−xSbx)2Te3 ternary topological insulators. Nat. Commun. 2, 574 (2011).
Google Scholar
Music, C. L. et al. Topological insulator Bi2Se3 skinny movies grown on double-layer graphene by molecular beam epitaxy. Appl. Phys. Lett. 97, 143118 (2010).
Google Scholar
Chang, C. Z. et al. Band engineering of Dirac floor states in topological-insulator-based van der Waals heterostructures. Phys. Rev. Lett. 115, 136801 (2015).
Google Scholar
Li, J. et al. Superconducting proximity impact in a clear van der Waals superconductor-metal junction. Phys. Rev. B 101, 195405 (2020).
Google Scholar
Bretheau, L. et al. Tunnelling spectroscopy of Andreev states in graphene. Nat. Phys. 13, 756–760 (2017).
Google Scholar
Cascales, J. P. et al. Band construction of topological insulators from noise measurements in tunnel junctions. Appl. Phys. Lett. 107, 252402 (2015).
Google Scholar
Knispel, T. et al. Cost puddles within the bulk and on the floor of the topological insulator BiSbTeSe2 studied by scanning tunneling microscopy and optical spectroscopy. Phys. Rev. B 96, 195135 (2017).
Google Scholar
Cyrot, M. Ginzburg-Landau principle for superconductors. Rep. Prog. Phys. 36, 103 (1973).
Google Scholar
Talantsev, E. F., Crump, W. P. & Tallon, J. L. Common scaling of the self-field important present in superconductors: from sub-nanometre to millimetre measurement. Sci. Rep. 7, 10010 (2017).
Google Scholar
Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: extra present, cost imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).
Google Scholar
Daghero, D. & Gonnelli, R. S. Probing multiband superconductivity by point-contact spectroscopy. Supercond. Sci. Technol. 23, 043001 (2010).
Google Scholar
Flototto, D. et al. Superconducting pairing of topological floor states in bismuth selenide movies on niobium. Sci. Adv. 4, eaar721 (2018).
Google Scholar
Suderow, H., Guillamon, I., Rodrigo, J. G. & Vieira, S. Imaging superconducting vortex cores and lattices with a scanning tunneling microscope. Supercond. Sci. Technol. 27, 063001 (2014).
Google Scholar
Dvir, T., Aprili, M., Quay, C. H. L. & Steinberg, H. Tunneling into the vortex state of NbSe2 with van der Waals junctions. Nano Lett. 18, 7845–7850 (2018).
Google Scholar
Li, H. Y. et al. Electrode-free anodic oxidation nanolithography of low-dimensional supplies. Nano Lett. 18, 8011–8015 (2018).
Google Scholar