Wang, G. et al. Colloquium: excitons in atomically skinny transition metallic dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
Google Scholar
Mak, Ok. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metallic dichalcogenides. Nat. Photon. 10, 216–226 (2016).
Google Scholar
Shree, S., Paradisanos, I., Marie, X., Robert, C. & Urbaszek, B. Information to optical spectroscopy of layered semiconductors. Nat. Rev. Phys. 3, 39–54 (2021).
Google Scholar
Harats, M. G., Kirchhof, J. N., Qiao, M., Greben, Ok. & Bolotin, Ok. I. Dynamics and environment friendly conversion of excitons to trions in non-uniformly strained monolayer WS2. Nat. Photon. 14, 324–329 (2020).
Google Scholar
Raja, A. et al. Dielectric dysfunction in two-dimensional supplies. Nat. Nanotechnol. 14, 832–837 (2019).
Google Scholar
Chow, P. Ok. et al. Defect-induced photoluminescence in monolayer semiconducting transition metallic dichalcogenides. ACS Nano 9, 1520–1527 (2015).
Google Scholar
Tongay, S. et al. Broad-range modulation of sunshine emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13, 2831–2836 (2013).
Google Scholar
Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).
Google Scholar
Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit–coupled synthetic lattices. Sci. Adv. 3, e1701696 (2017).
Google Scholar
Pommier, D. et al. Scanning tunneling microscope-induced excitonic luminescence of a two-dimensional semiconductor. Phys. Rev. Lett. 123, 027402 (2019).
Google Scholar
Darlington, T. P. et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854–860 (2020).
Google Scholar
Bonnet, N. et al. Nanoscale modification of WS2 trion emission by its native electromagnetic atmosphere. Nano Lett. 21, 10178–10185 (2021).
Google Scholar
Péchou, R. et al. Plasmonic-induced luminescence of MoSe2 monolayers in a scanning tunneling microscope. ACS Photonics 7, 3061–3070 (2020).
Google Scholar
Peña Román, R. J. et al. Tunneling-current-induced native excitonic luminescence in p-doped WSe2 monolayers. Nanoscale 12, 13460–13470 (2020).
Google Scholar
Zhang, S. et al. Nano-spectroscopy of excitons in atomically skinny transition metallic dichalcogenides. Nat. Commun. 13, 542 (2022).
Google Scholar
Peña Román, R. J. et al. Tip-induced and electrical management of the photoluminescence yield of monolayer WS2. Nano Lett. 22, 9244–9251 (2022).
Google Scholar
Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).
Google Scholar
Zhang, Y. et al. Visualizing coherent intermolecular dipole–dipole coupling in actual house. Nature 531, 623–627 (2016).
Google Scholar
Doppagne, B. et al. Vibronic spectroscopy with submolecular decision from STM-induced electroluminescence. Phys. Rev. Lett. 118, 127401 (2017).
Google Scholar
Imada, H. et al. Actual-space investigation of vitality switch in heterogeneous molecular dimers. Nature 538, 364–367 (2016).
Google Scholar
Krane, N., Lotze, C., Lager, J. M., Reecht, G. & Franke, Ok. J. Digital construction and luminescence of quasi-freestanding MoS2 nanopatches on Au(111). Nano Lett. 16, 5163–5168 (2016).
Google Scholar
Schuler, B. et al. Electrically pushed photon emission from particular person atomic defects in monolayer WS2. Sci. Adv. 6, eabb5988 (2020).
Google Scholar
Velický, M. et al. Pressure and cost doping fingerprints of the robust interplay between monolayer MoS2 and gold. J. Phys. Chem. Lett. 11, 6112–6118 (2020).
Google Scholar
Castellanos-Gomez, A. et al. Deterministic switch of two-dimensional supplies by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).
Google Scholar
Cadiz, F. et al. Excitonic linewidth approaching the homogeneous restrict in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).
Rosławska, A. et al. Mapping Lamb, Stark, and Purcell results at a chromophore-picocavity junction with hyper-resolved fluorescence microscopy. Phys. Rev. X 12, 011012 (2022).
Ross, J. S. et al. Electrical management of impartial and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).
Google Scholar
Branny, A. et al. Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics, and cost tuning. Appl. Phys. Lett. 108, 142101 (2016).
Google Scholar
Lorchat, E. et al. Filtering the photoluminescence spectra of atomically skinny semiconductors with graphene. Nat. Nanotechnol. 15, 283–288 (2020).
Google Scholar
Parra López, L. E. et al. Single- and narrow-line photoluminescence in a boron nitride-supported MoSe2/graphene heterostructure. C. R. Phys. 22, 77–88 (2021).
Wu, S. W., Nazin, G. V. & Ho, W. Intramolecular photon emission from a single molecule in a scanning tunneling microscope. Phys. Rev. B 77, 205430 (2008).
Google Scholar
Robert, C. et al. Exciton radiative lifetime in transition metallic dichalcogenide monolayers. Phys. Rev. B 93, 205423 (2016).
Google Scholar
Srivastava, A. et al. Optically lively quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).
Google Scholar
He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).
Google Scholar
Koperski, M. et al. Single photon emitters in exfoliated WSe2 constructions. Nat. Nanotechnol. 10, 503–506 (2015).
Google Scholar
Chakraborty, C., Kinnischtzke, L., Goodfellow, Ok. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum gentle from an atomically skinny semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).
Google Scholar
Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically skinny semiconductor. Optica 2, 347–352 (2015).
Google Scholar
Hill, H. M. et al. Exciton broadening in WS2/graphene heterostructures. Phys. Rev. B 96, 205401 (2017).
Google Scholar
Goryca, M. et al. Revealing exciton lots and dielectric properties of monolayer semiconductors with excessive magnetic fields. Nat. Commun. 10, 4172 (2019).
Google Scholar
Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional supplies. Nat. Commun. 8, 15251 (2017).
Google Scholar
Froehlicher, G., Lorchat, E. & Berciaud, S. Cost versus vitality switch in atomically skinny graphene-transition metallic dichalcogenide van der Waals heterostructures. Phys. Rev. X 8, 011007 (2018).
Google Scholar
Ugeda, M. M. et al. Large bandgap renormalization and excitonic results in a monolayer transition metallic dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).
Google Scholar
Zhang, C. et al. Probing crucial level energies of transition metallic dichalcogenides: shocking oblique hole of single layer WSe2. Nano Lett. 15, 6494–6500 (2015).
Google Scholar
Miwa, Ok. et al. Many-body state description of single-molecule electroluminescence pushed by a scanning tunneling microscope. Nano Lett. 19, 2803–2811 (2019).
Google Scholar
Doležal, J., Canola, S., Merino, P. & Švec, M. Exciton-trion conversion dynamics in a single molecule. ACS Nano 15, 7694–7699 (2021).
Google Scholar
Kulig, M. et al. Exciton diffusion and halo results in monolayer semiconductors. Phys. Rev. Lett. 120, 207401 (2018).
Google Scholar
Huang, B. et al. Emergent phenomena and proximity results in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).
Google Scholar
Tang, Y. et al. Simulation of Hubbard mannequin physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).
Google Scholar
Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).
Google Scholar
Seyler, Ok. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).
Google Scholar
Baek, H. et al. Extremely energy-tunable quantum gentle from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).
Google Scholar
Liu, E. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 594, 46–50 (2021).
Google Scholar
Imada, H. et al. Single-molecule laser nanospectroscopy with micro-electron volt vitality decision. Science 373, 95–98 (2021).
Google Scholar